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PREFACE,

This book began as en attempt to "explain what measurement is ab , from

the point,of view of a mathematician". It was intended that thereigouldhe a
1

companion book, wriften'froma scientiflaejviewpoint: It soon'became apparent

that., a book about measurement, Written from either point Of view; would have
.to -say somethtng about the other, 5It also became apparent that the d\riginal

_ 'objective was inappropriate: the question of "what measurement is aboUt" is'a th
. not mathematical, but philosophical. Much has been Written d much more

wyll undoubtedly be written) by scientists and Ahil!osophers, on the subject Of

i measurement. Most of these writers find itrieceisal-y to use mathematical, ideas
. , )'

`point
I ., -

- ,:Thiheir "explanations"; but, fromsa point t of view, their treat- ',,
.

', 1-11.-

ment of.ithe relevant mathematical ideas, and de he connections betiqeenfthese
,. .

ideas; frequently, leaves much io be desired. It is an objective of the present

book to help'fo fill thiS gap:: to; identify those mathematicaliconcepts which_

are relevant to elementary measurement,,and td exhibit their logical inter -.

relationships,. r
'

!

In comparatively recent times, it has been discovered that mathematics ha8

no necessary logical connentioni.with the real world. This dicovery haS been

accompaNeeby..anever growing expansion of the activity, often called "mojel-

, buildAg", whiCh)Seelts o.link the empirical structures of the sciencea with
-

. Eii)

the/formal structures of mathematics. This link is established by means of

- functions, which r,"model"), empirical systems into mathematical.ayatemd,:_
. .

in such a wayirthat structues ai'ived at. empirically and inductively are

carried over into,corresponting mathematical-structures. SoMetimes this pro -.

cess makes use of exiStingtmathematical systems, and sometimes new mathealtical

41.[

systems are crea ed to provide
,
apprdpriate model spaces. Among-the mathe-...

s

matical systems in most.frequent use as model spaces are the'various nuMpler
.. . .

systems (the w e i1Ahibers, the rational numbers, the rspl numbers, the.com-

L, plex numbers, various geomerlqc spak, vector spaces, and, so on7NManymodel
, -. -

4functiAs ase, in fact, cOMplex ando1nter-rAlated collections of simpler fungi-

.

.

{which. tionS, And it, is these simple.functions arelhassoci-ated directly with -,
. ,

I -
. -
: 'the procesees'of _and their relationships wi4eh one dnother,,which

v.,'
are on4"4-our concerns ill this book.

ir .
.0-1 )

.4. r
..;

' s. 1 ",,,,_%.

PO . ... ,
":- I,...., 4 ' 1'1

%
1 4

.:- . 4.
.,...r./s, , 1. .
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..)** Measureffent_also has a'place, withfh mathematics: 'there areany situa-
, It

tions in mathematIcs in whichtone matheMatical system is mapped into-another .

- , -,
.

in such a way that We.feelkhat a "measurement" proces is involved (e.g.,
4...o,

.

1.

length.and area Concepts
.

in geometry). 'When these'mathematicalsystems are
.used'iAmode/making, mathematicalollmeasuement" _frequently becomes 1 component.,.

.. . .
in empirical measurement. We ,examine some of the simplest-'expmpies

.
of this .

.

,--
A'

r ' /..,
f E

r situation, A-- .

e
j

/1
; .P

Tha,book has ileen l itteil-with Iligh'schoolschool, teachers in mind,
: N,

but it ishoped that some of it will be within the grasp of elelentary school
de',

vteachent,-ani that it PiigHt be usefully read by teachers of, science, eeby

college ieachers. The' principal concern of the hook is to exploit the idea
. ..

that "measurement 'involves structure-preserving function" in order to provide %'-
.,.

.

. a cOneeptual framewo?k.in which the elementary ideas of measlirement can be ,

, understood. It is not necessary to follow all of thb details (some of which
.

. ..._ -__
. ' -.-.... ...

Ovol
,

are rather ved).in.order to get a picture of this framework;.and it is .

cert4n]?y!'hot.implied thtt this is the only fraMework which is sultable"for
.

. ,

the study of a theory\of elementary measur4tent. '
r1 .V. . ''.' .

, . ...

( As You will see, the mathemPtical concepts which t\rp.relevant to elemen--

)3 , .

Itary measuternt come froma variety of branches of mathematics (`classical,4 .
'.real.analysis, linepr alpbray linear analysis, geometry#

\

elementary topology,.

and so on).. These concepts are usually encollutered'separ tgiy in more or less

distinct mathematics courses, ana the readet .rho has,so en ountered the should
. ...,

find it interesting to see how a study Of the mathematical ackground of.measlar.9-

ment ideas wings them together, For*this reason the book should 're a useful4 .
,text for an advanced undeygraduate course, Or for, an inservice course for high

. * 4 ' , , \ J. school siathemrgics teacher, .
,

" -

. a. - .

'

The mathematicalackground which is re

., -,, ,
'...

4,

ired of the i.eade isnapproxi-
1mately that which is inclUded ins good. high school ucation, t it is

N. . . .
expected that toSt readers will have gone further than, ttis. We assume a ,..

. 4 t
41 '' \ 'general familia1 rity with the'real number system, some ,,nowledge of geometry,

. 1
.

.

and some idea of what is invplved In the concept of "functimP. In the func-

tional approa ch to measi< Lement, e are typically concerned With two systeM, ,t---
, t

and, we areciooking for structure- preserving functions from one to the other..co-

The structures. commonly encountered may be descriiped.in terms of.such notions
--,-,,, . : : ..

as equival nce relations, order-relations, and binary operations; and.the
.

systems are'often semi-groups, or groups. We introduce -these.jtexTdi,.,
. . e ,

1 1 1
1

$
' . i) '

.\ '

/'
2
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. , . .

0 becesuselityouldsbe clumsy, and unnatural, to do withOuttthem;
.
but,you do_not

,
.

4 need any prior knowledge of them in 'orderv.-,t,o understand their limited use in

this bbok.. - ..

0 I, -
.

, "4'.. .'

In most of the measurement sItNations which we treat; the values of the
..

measure ,'unctions are positive real' numbers. From the empirical point pf view
.

,^

orti
it is frequently s ficient to use.positive,rational numbers, but from thg

,

theoretical point_of vied we cannot answer many oftheinost interesting
. . .

ZittektiOnA (e.g.: Why :bust two length functions be similar? Why must the
... .

--,. , vea,f:Unptions for rectangular regionp be related as they are to length"funcL
..y

.
' .. tions? .1,illy aie power functions -end homogeneous functions- so intimately con-

noted with dimens2on questions?) unless we use the real nuMbeh, and those
. , .: . -

.2.prope5ries'of r.5..pl numbers (i.e., topological completeness) which distinguish

the real number system from the

tiriction might not b clear, 'so

development of the s cture of

, prove a number of'results-which

rationalumbers. For many readers this dii-

wehave devoted_a section to an outlineof the

the real number system. In this section wer
depend on the deeper peopertieg of the real

numbers, and ,hicp we need to use la'tel) in the book. The pace'is fairly

ader tb whom the itlpds,..af thiS section are totally unfamiliar

more detailed study of one of the expandeditreatments to
A.

raid, rand, r

from

which'we fefer . However' in this and other places it is probably best td skip
0-t

over some of the-more complex'detaile, and return to them if and when they

become necessary forsn understanding ofwhat comes later. The'pace of the

boo is necessarily uneven;, and you should not attempt to master every topic

before proceeding to the next.

"
. .

- A number of- exercises are included, paipicularly in the earlier review

sections. Some of these are really extensions.of the text, so you should

(at least) read them-to see what they are about. Iri'lhe later sections there

are-many UnprOVed'statements.which can be' treated'aserdlses.

Concerning measurement itself, nothing is assumed which,is not part of

the general knowledge of most citizens.; However, before reading this.book

you "light find ,itsefial to review the elementary ideas on measurement which

are contained in the tchobl Mathematics Study Group publications (in the

"Studies'in MathematiCs" Series):

Vol. V: Concepts,of Informal Geometry (Chapters 6, 7,.10)

Iptuit -,gepffitry (Chapters ,2, 7)

VOL IX: A Briel!,40,0 rSe-in Nathejratics For Elementary School

1
v-

Teache'r4 (Chapters 27, 8_

et
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tMeaguiTment is a,very,hig topics, and anything approaching 'a complete

treatment would ocLpya,small library. With so much material available, it

is Znevitablethat thechoice of content has been somewhat arbitrary. Thus

there is an emphasis on mathematical, rather than onempiricai; ideas4 there

is an emphasis on those measurement concepts which have been motivated by the

physical,sciences, rather than on those which are more relevant to the bioL

logical and social sciences; and such important topics as the establishment

anti maintenance.of.standards,and thestatistical analysis of data,. are alr myst
ci . .

aompletely ignored.
,

q,o a,considerable extent We,have concentrated on giving a fairly complete

treatment of elementary concepts, rather than a superficial picture of the
..

whole subject. Thus m ^la of our discussion falls ih that no-mants-land of,
..

.

ideas which are usual considered.too sophisticated for an elementary treat-

ment, but which are later assumed to be "known" or "understood", inore

advanced courses and'texts.
_

% .

. In a few Places (e.g., under the heading "'Links With Other Parts: of

Mathematics ") we.have pointed.out that some of the mathematical ideas which ...

. arise in connection with a theory of measu'remen, are directly related to some

of the basi ideas of more advanced mathematics., (E.g., the notion of "dual .

iPspace", in linear algebra; and the notion of the "tensor product" of, modules.) '

. .
, . .

These *connections arepointed out for the benefit of any reader who happens to
41 0,

be familiar with these ideas, and to show that many so-called "advanced"

notions are 'already present in the context of elementary measurement; but it

4 %is not assumed that the majority of mathematics teachers either are, or should

be, familiar with these ideas at thepresent time. We expect to explore thesek.-, , ,.,,w,.. % P .:. ,i, ft
I

c6nnections more thoroug y in a later book. .-

N.N.
The present book will have served its purpose if it gives you some feeling

4,

for the variety of mathematical ideas which are relevant to am elementary theory

of measure, and if it encourages you not only to pursue these ideas, but also 0.

to read more widely (and critically) in the extensive literature which is :V
devoted to the subject of measurement. '.

. -

. ,,,- " i .
,
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Chapter 1

4

"31FASUREM2* AN611EASURE FUNCTIONS

1'1-1 Introduction.
0

0

In the year 1900, the great,philosoPher-Mathematician, Bertrand Russell,'

"MeasUrement of magnitudes Most general sense, any ma pod"

by which a unique and reciproCal4Vrespondence is establiOled betweeh

all or some of the magEli'ddeg-of a kiIld'and all or some of the numbers,

wrote:

. .

the

integral, rational or real,
,

desirable that the order of

to that of the numbers, i.e

the same for magnitudes and

as the case bay be. - ,- - - - - I t will be

the'magni.tudes measured should correspond

., that all relatiohs of between should be

their m4asures.14

While this statement might zibIgive us a very complete picture of all

complexity that is involved in the notion'of measurement, it dies cofiteiii

tile germ of the -idea that the present book attempts to convey: that a "measure"

.is a function, defined on some specified set of objects, and designed to re-

flect certain. properties of those objects. In order to elabOrate this idea, 111

we need to use such,mithImatical potions as set, relation, function, group,
.

semigroup, and so on. As these are not generally,tAate# together in the

wa 1.n which we peed them, st of this first chapter is devoted to a basic

of,ideas and terminology. If theseideas are familiar to you, you -

should be able to ,go through the chapter fairly quickly. If theY'are not,

you are urged to ;fop and work the exercises._ (For a few of the exercises
-

,you will have to draw on your knowledgaof mathematics outside of this book.)

References are given to more detailed treatments of many of the ideas intro-

duced.
O

The chapter concludes with .the outline of a'scheme for clas'sifyi'ng

measure functions. This involves _the informal use'of some common ideas like

length,' time,. area, etc., some of which are introduced more frecisely in

later chapters. This was,done deliberately in order to give you a general

framework in which to fit all, or at least most, of the common measure func-

tions, before getting involved in_sd"Taich detail that it might obscure the

overall picture.

-

.
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142 Measurement
I

.P'

. r;-----
You' miqlt expect us to begin with.a definition of "measurement, or by

,
i

explaining the natureof measurement, s6 that you could determine, in a par- . J-

ticular situation, whether the idea of measurement was involved. This, un-

fortunately, ware unable to do. Some attempts at de.,* finition tie the notion.

of measurement to the notion cif /timber. Our point of view is certainly

. broader than this: we consider that each of the examples below involves the

ta

idea of measurement. These examples have been chosen to indicate the wide

variety of contexts in, which the idea of measurement is4discernible.

1. Our identity is measured at birth, partially by the assignment to each

of us a name, partially in terms of the identity of our parents and the

date of our birth. Later our identity might be more accurately measured

by a serial number if we are in the armed forces, or_by a social security
.

number, a fingerprint, or a passport. .

oA
.2. The location of cur place of residence is usually measaed by a set of
), four iteml: a state name, a city name, a street name, and a number. ..'

3. Oul'orowth may be measured by a set of
I

triples, each'of which consists

4. of a date, a number representing our weight and .a number representing
4

t

our height.

4. The size of our family is measured by a number; the cardinal number of

, the seto Members of our family.

5. Our shoe size is'measured by a pair of items consisting 5 a number and

a letter (or combination of letters). 'chese, in turn, are measures of

the length and the width of our shoes.'
,. . ,) IF I

'i
6. The size of our house is measured by a. collection of numbers representing,

..:4
suth things as the,floor area and the numbers of rooms of various types..

Our: 7.
6

Our intelligence is measured by a number, our so- cabled IQ.
-

% %

8 . Our schoorreport cards aarea measure of our educations progress.
,

0 .., ,
.

. 9./ We can use their annual dividend rates as a measure of thesuccessof
.

our '.
qow

,,.-
''-

.
_ ...

. .

10. If we are farmers, our annual production of wheat measured-by a_

'4 number which gives the size of ou;.heat-crop in bushels; Our annual
1

production of eggs is measuxed'by a number which gives the iizeof our

.

I

egg "crop" in dozens, t
..r1.17....4 , /

1
Af. 11. A baseball player's batting average is a measure of his success at bat.

.-
f* 1, *

al' s 1. ,
1.!

6'

1 i
1
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12. The half -life. of a radioactive element is a measure of the stability of

4
its atomic pucleus. .

<

13. The symmetry of a crystal is measured 1),?, means of a certain group of

transformations,

14. he extent to which a group fails to be abelian (cA omLitative) is

meas ed by its commutator subgroup.
A

15. The connec ity of al topological space is mea y,its homotopy

- ,
groups. ,

a Montt worryif the last, ew examples contain unfamiliar tdeas.]

.

4 One could add to this iist indefinitely, but this should be enough to

conyincelou that the idea of meastrement'is found in a:wide Variety of con-

texts and forms.. You might well ask whether there are any discernible common'

features, and if so, what are they.

Fistly, notice that in each case there are."objects" to be measured.

In examples 1 , 3 , 7 , 8 , and 11 these objects are people. In 6 the

objects are houses. In 4 the objects are families. In 13 the objects

ale

4t M

crystals. III 15 t4 object's are topological spaces. In 14 the

objects axe groups.

econdly, each measurement involves some attribUte of the object, and
,

'1 home proc s by means of whibh this attribute is to be measured. We don't

. simply measur neople! we measure them for weight, we measure them for

height, We measure them for intelligence, and so on. It is convenient in

many cases to use the common names -of the measured attributes -- names such

as,length,sired, area, intelligence -- but we make no attempt to defipe these

words, or to consider them independently of the processesfiy means of which

-they are measured; In 'host, if not all, cases,"'it'is doubtful if the attribute

has any objective meaning except, In "relation to the measurement process.

Finally,4 each case there is a, y>"quantit which results from applying
(K,

. a measurement process to one of the objects for winch this particular proses/
/

...

_

is applicable. In example 4 , this quantity is il whole number. In 9,/, 10 ,

an0 11 , the quaWty is a.real number. In 8,, it is a report card (i:e.,,
.41.'

the set of information contained on the card). In examPle 1 , it might be at
,

fingerprint, a social security number, o' a pagsport, depending on the

particular. process used. . ...-

*

* 0
This question is of considerable philosophical interest. Ybu will find' ,

referencd to itin [1] , (21 , [3] , [4]
, [5] and in various EnCylopaedia

A
Britannica articles under the headings "Dimensional Analysis","Meaning",

"Knowledge", "LogicalVositiyism".

4.

7

A
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To sum up: in eachscase th6re is a colleCtion. A of objects to be
measured, B of "quantities" or "measurements'', and a procedure for
associating with eachobjectAn A' an element of B-

recognize this situation; 'what we.are dealing with is.a

-have a'lot to say about functiOns in later sections, but.3 ,
tore6511 here the babic idea of a functiono

We immediately

function. We shall

it might be useful

Suppose that A and B are 'any two sets, ,and that we have a rule which

assigns exactly one member of,B toreach member c4 A . , Then thertil, to=.
getheryith the set A , is said to be a function (or amapping), and the ;et
A is called its domain! The elements of 'A are called arguments of the

.

fund ion. The set of thoSe members of B yllich'arelactually assigned to
members of 43 icalled the range of thd function. Theparticular member of
B whigh is ass d

-
to a particular dirrgumeni a is, called the value of the-

function

..- ... -

function at a , or the:inlage of a- -Under t function. If f is,a name

for the function,fthen the value of f 'at a is usually denoted by fqa)
We saWsthat '" ' f Is a function-on A with values in B" ; . or "f is a fun*". ,

tion from A to .B" , and indicate this syffibolically by such.notatiOns,es:

A., .

and

The set

B

. . ,A 1-4B . . t'

B is called-the-value space, or,iMage space, Strictly
speaking-psve ;h2Uld not use

have different4mage

space"; and "set of values", where we

of,definitiOn" where yo use "domain",

the'defj.nite,aqicle, as the'same function

spaces. (Some writers use "range", where we use "Image

use "range". Other writers uses"domain,..

and 'domain, lues", where we Use
1"value space".).

4 In every situation
,

is a related finction:

lar measurtme4,process

means of Whichla value;

objects.

in which the idea of measurement is irkolved, there t'

ts domain,is-the set' of objects to which -the particu-
,,

applies, and the process is provideOthe.rule by-
%

or measure; is assigned to eabh member of the get or

_

,Itisconvenient'to refer'to those functions which arise in measurement .4

situations as measure functions. Some of the measure functions arising in,
%.(

Ibur earlier examples can be'roughly.described by such expressions as,"length4 ..,

in inches ", "area in square fee t", "numerosity in dozens".

- r

;

r "
I'"
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.

It has,%Ometimes.been suggested-that for'any twQ sets A and )3 . any

function f : A H B should be regarded:a4 a measure function'.on A
t

. We

do not need to accept or reject4this point pf view. However, if adopted, it

would mean that there are an awful lot of measure functions,:for most of which
t. W t

we have, at present, no conceivable use. nil will find a lot of. interesting

dis,cussi,on and diversity of viewpoint on this, and on other ideas related tp

measurement, in '[1] .

.1 -3 Relations

In this section andthe next, we review some of the basic ideas and pro.-

perties of relations and functions.. Much of this will probably be.familitl to

you, so go fairly quickly wits very few examples. Parts of 'this material

are tre4qd in much more detail, and.with many examples, in the BMSGpublica-

TIr
tions, "Intermediate Mathematics", "Elementary Functions ", and ,"Calculus". A

more advanced treatment can befound in 1,61 .

The notion of function j one of thg fundamental ides of Mathematics.

It is also.central tp our treatment of measurement. There. are different ways

of

- .

approaching the funttion concept. ditie,of the ways.has been indicilted in

ttne,last,secton, where

ias a rule, of correspond

with exactly one elemen

a.functid.(n from .a set A to asset )3: was regarded

nce, or sociatlon, wigch pairs each eAment of A

B . An equivalent procedure is to regard a func-

tion as a special kind of relation. As we shall need the general concept, of

relation lhter, we devote this section t9 a review of some of the main ideas
,,

concerning relations, before continuing the discussion of.'functions.

Let A and .B be two sets, not necessarilApdifferent. The cartesiani ,,, , '
0

product of .A and B , denoted:6y. AX B , id the set of all ordered pairs

Ia,b)
'

where a.s' A
,
b e-H . (EqualAy of ordered pairs is defined by:

., -- )

(a
l'

b
1
); = (a2,b2)' if and only if al -7.a2 and

,

b1 = b2 .) A particular case,

`withwhich you are undoubtedly familiar, is-the cartesian produCt R x of
.

_the real number syttem with itgelf: the elements of R x R are ordered pairs
,

.. ,, ..,1/4 _-_..a......: ._
,

of real numbers. Given any Arne, we can setup a. 1-1 correspondence (i.e.,
4,.

ecoordinate system) betweep points of the plane and elements bf R x R ;

.. Thus _if we pictukthe real number system:as the number line, we can similarly
, ,-----..

picture R x R as the (cartesian) plane.

.*
. It ls assumed that you are familiar with the.nOtion of 1-1 correspon-

dence. It is introduced formally in Sectian1-4. .

-9
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We are frequently interested in pairs of sets. whose ,elements have` some

sort, of relationkhip between '-hem. For example, ir A is the set of male

residents of.a certain town, and B the set of 'all residents, we can consider '

the relationship "is the son of" between members of A and B . That is, for
any a e A and beBi either, a.- is the son of bs or a Ah;pa 'tlijeon

b We can abbreviate "a is the son of b" by a S b . Thus the relation-s

ship` "is the son of" determines a set of ordered pairs (a,b) for which

a S b . This set is a 'subset of; A x B . It is sometimes convenient to
.

denote this subset by the same' symbol S., so that

S ((a,b) a S b) .

lk

We generalize this situation by defining a binary relation from to B,

to be any subset of the cartesian produet A x B ; if A = B ,' we call this a '

0.

binary -relation on A .

1

Whenever aysubset K of A x is, specified, we can use it define -a
14.--/*V'-'44---r ., .

:relationship" etween certain e ethents:of A sand, B , For example,. A
.:,

might .be the set of males at a dance, B the set og females, and K the

subset of A x B consisting of( those Ordered pairs (A,b) duch that a

danced with b ; oh A(.13) ;might be the set of 41 people riving in the

United States, and K 4he set 'of those ordered 'pairs ,(a,b) ' such that a

and b live in the same .state; pr A(4p) might-be the set eal numbers,

and K the set of those ordered .pairg (a,Q such t a < b . (Can you

picture this.set of' points ,as a subset of the cartesian plane?) The number

og examples could be extended indefinitely:, the concept of relation is

91early very general..
.

-th.

l'he set of those;a n ,'A whiCh appeal" as a first member in at least

one ordered tor (a,b) c'K , is called the doKtin df K ; it is a subsdt of

A . The get of those b in R which appepr as a second member in ixtleast

one ordered pair (a,b) e K , is called the range of (K

I

3+. ,-..%.---.14. sn
... .....33 .... P , NI0+.0 ...03

t LetUS 'taiposaF1.1.,40angi,ne., our.attentipn to situations where A = B .
' ..

That is"' we'donsider relations on a set A . Such relatio13,5 can be _classified
-

- in terms .of their propel:nes; . le.t., .K be a ralat,ionon A ; ( i.'6'. ; K C A X A).0 I
1,..s.

The we say:thaxt-
t .....

'
- ,

,
( i ) K--is- reflelcive if--. ca)a) ,-e'K for every a e A

.
; (-i . e . , if

-ECK a for every a g A);
4 *4

(ii)' K issynimitrit "if' '(ii b) E K whenever (-b,a) e K ;,.(1.:e:,*

"4
6, .b K a -*plies tlf K V

0

IC is trarisiti'Vrit(li;c) *e IS whenever (a,b) e K., and

e-K-1-- a`K b and b K c imply a K c) .

1 ,
.,. :

....mg.., .
.

............,-Y- - --.
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To fix these ideas in-Mind you should examine theT-Pdleitint'exatples

above to see which of the relations in them have some 'or all of thesespro-

joerties,,and- you should construct other examples for yourself. YOu should

alsolkdok for examples of relations which have none of these.properties;
.

,

(e.g., the relation F defined by. a F'b provided that a = b + 1 ; On the

*Oft, set of-posAive integersi

Relations which have all three properties -- i.e., which are symmetric,

/
reflexive, and transitive -- are,particularly important,. they are called

_

/
equivalence relations. These,have the important property of sepx2.21,1Ao(or

partitioning) the sets to whIA they apply into disjoint subsets. (A partition

of a set is a collection of/non-empty pairwise disjoint subsets, whose union is

tt whole set.) ,For an example ot an equivalence relation; see the relation-

ship above of residing in the same state. The disjoint subsets resulting from
s

,an equivalence relation are called,equivalence classes: any twoidements in

Lie same'equivalence class stand in the given relation to each other,and no

two, elements from different equivalence classes stand in the given relation to

t

'each other. ,Every equivalence relation on a set determines a partition of the

set, and every partition determines an equivalence relation. Equivalence re=

lations abound in mathematics: congruence and similar ..4<pgeomeric,fi es.

ai'e equivalence relations; congruence modulo a non-zero integer is an equ

0,
:lence relation on the integers; the relation (a,b) K (c,d) if and only if4%

'
.

a + d = b + c ,.is an equivalence relation oh the set of ordered,pairs of

(positive inatural kpositive whole) numbers; the relation "is as tall as" is an equiv-

lence relation= a,set of people; the relation of 1-4, ebrrespondence is an
0

7
,.. , .,..

equivalence refation on a collection of sets. You shotild try to think of .
.

5.'

1-65----other ekamp . ":.%
,/,).

,

;4+4 ,.* .

Another kind of /relation which s particularly important in the considera-
.. ,

tion of mea Vi-eii.ean is an order relation. There are a. number of different

types of o der r"ation, all of which are transitive A partial order rela".
- .

.

tion, 1:44artial ordering is transitive,-reflexive, and sntisymmetric. (That '

:r4: A x'A is E; partial ordering on A if, in addition to beingtranai
,

tive\iand reflexive, (,a b). eV and (b a) e K imply a = b .) Examples of
7 ' ;',4.i

Partial' orderings are: A -

1f (i) a, K b if .and only it, a < b ; A = R = the set of real numbers;
, 3 ,

'(ii)
,

a K b ii and only if a A..:Is the set of all subsets of a

I

fixed set S

I

6 -I,

/ ?, A



A.

1-4

Note that for a partial ordering K on a sq.' A , it2is%not necessary
.

, ..... .i that a K b or b K a .for each two elements a ,, b of Ay, (Look at at o

example (lit) above,tioth:thiS point of view.) However, if a partial oiAaw.

relation K on a set A satisfies theadditional ,Condition that for every,
i: . ,

.., .

two elemehts a , b of A , either a K b or b K po,, then the relation is
....,.....-__,,,......)......,,,,_ ,...

i cr .called a weak total order relation. For an example see (i) . above.
,

. .,

AnOther important class of order, relations are those which, Th addition

to being transitive, are irreflexive. A relation K on a set. A' isirre-
\ .

.

-flexilie if, for every a e A , N,a) ft K 7 (Note ihat reflexive and irre-'4
4N

o .
irre-

flexive are not complementary properties: there are sgme:reiatiOns which are
.

neithei"reflexive nor irreflexive. See if you can think of one.)
........ . ,

. .

A strIct4tatal order relation K. on a set A is a relation which is '
' transitive,'and,which has the additional property (often calied,the "law ---.../-"

of;trichotomy") that_ for every, two., elements a-, b of. A exactly ones of ,.

the following ihreestatements is true: a=b;aKb;bKa. The relations
t ,

. .<' and > on the real numbers are well knownaexamples of strict total oraer

When there is no danger of confusion we abbreviate-" }c tota

order relation" to "order relation".
.

It'is -easy to prove that a strict t 1,

°
czorder relation is irreflexive. -

,4

1-4 Functions , , 4
4- .9-

.051;

In Section 1-2 we hwie 5.4cribeddi%functon .f- from A to B as an

, .

*
asstiatioil of exactly-onVelement of:- B with eaCh element of A . Thus ;or

eaCh,aeA,f determines an ordered pair (a,b) with b= f(a) -, and hence
if determines uniquely,a set F of prde red pairs, with the properties:

** i ,
%(i) each element of A "occurs-4as a .first member of some ordered

-pair /a,b) .froth 'F ; 1

i >! 1

(ifp each element'ot A oc:cursonly, once as 'a firdt meMber, ,

1

i'

I p

-As we have seen in the previous _section, the set F is a relation from

A
.

2to B . ' Thus a function determines a particular kind of relation: onev,

4
whosei*Mal.p.ia

the whole of A. (property.(i)), and which also satisfiej p
,'

- f,condit.on of "single-valmedness" (property (if)). On the other hand, it is

clear'-that-if-ve have a r)lation F satisfying. (i) and (ii) , then-77,ie can,
.. ,

,1,

Use B' to defihe a function f : -4B , such that f(a) = b if and only
. ,

i -f .(a,b) e F-., Thus we have a, haturai 1-1 correspondence between functions,
,. 4 . ,.... .., - .. - 1

,,
""-- and.those relationZ Which satiSiy (i) and (ii) . This suggests that we .

Could equally well define a functiOn as'a special kind pf relation -- a
i

defini.tionsplich you will find in manybooks.
.. 0. i . 12

f

1 ,
7



V

1-4

The function concept is so important-that it is useful to use both

approaches, and to realize their equivalence. __Bepause of this equivalence we

move freely from one. approach-to the other, and it will be, convenient

to economize on notation by using the same symbol for the set of ordered pairs

and for th4 rule of -asso4ation. Thus, referring back to our,earlier notation,

we Use. f = F = ((a ,,f(a)) :Npr all a e A)

A., The notion of a function as a set of ordered pArs has an obvious con-
*

neciion with the notion of the graph of a function. The
, 4

A -4B can be defined as. the subset of A x.Bwhich
v.
mines. This makes the ideas of function, and graph of a

-
the same. You will recall that-in more elementary work,

graph of a function

the function deter-

function, virtually

especially where

A,= B =-1i = the set of real numbers, it is customary to refer to a diagram-
.

matic reptesentatiaw of f as its "graph".

A functionAle: A -4B is said to. be one -one (1 -1)' if = f(a2).

'iMplies thak-ar,6=...a2 ..It is Oaloto be onto, if every element of B" .appears

at least once as a value; i.e., if the range of the function is B . Every
,

function is onto its own range. A function which is both 1-1pild onto is the

well-known 1-1 correspondence or isomorphN1 of sets. Such functions are
1

particularly, important, because they have inverses: the inverse of a,l-1

correspondence f : A -4 B is the function (also a 1-1 correspondence) ft

defined by ft(b) = a , where a is the unique elements-,of A satisfying
4 0

f(a) = b . Clearly, if ft is the inverse of f , then, cf'd.s1"46 inverse
'

of, ft / et' /

A 1-1 correspondence f B is often denoted -by f B

In order to distinguish (in diagrams) between a 1-1 correspondence

f : A 4-0. B and its inverse, we introduce the notation

-e

A<-»B .

This should be read "f is a .function..from A to B , and f, a 1-1

cor pondenc e": The 'inverse funCtion (ft) '8an be indicatedyby

a. ,

i

. f t

A -44-40B

In other words, the double arrowhead indicates the "direction" which corres- "i

<6

,
ponds to the named funption. We shall look at inverses again after we have ?

considered,the notion of composition of functions.
. ,

7'

1

.8



; A particulMy brtant type of function id one which maps each ordered

pair of elements of a sett.ato an element of the set. Such a function is

known as a binary operation on the set. quip ab in r weration on a set

is a function
I

f :AxA-4A.

If f, 4s only defined on a subset of A x A , then we call it a binary
. .

operation in A . ,The best known examples of binary operations on a set are .

the familiar operations of addition, subtraction, and multiplication, defined

on the 2 gal numbers: Examples of binaryopetations,in sets are: subtraction

fOr the positive integers, division for' the positi.le integers,-division for

the real numbers.

If a binary operation

f

A,
satdsfiw

f(f(a,b) ,c) = f(a ,f(b,c))

for: all a , c e A for which each side of tie equation is defined,.

then f said to be an associative operation. This pioperty is more___,_______
1. familiar'xn thd form which uses a notation such as

f(a.b) = a b .

oo

'Wit i this notation'the associative condition becomes

- ,

b o c =. a o (b o c) .

Using the same notation, the operation is said to be commutative if

a ob =:b0,ta.,for all -a , t , for which each side of the equation is defined.

a

- You:--shol44,,regand yoUrielf, by consleOatlon!g4he familiar opeilttions of

sUbtraction,and division in the real numbers, that not all binary operations

I

ara-associateZETTOCEEI"Egri.41,1"
-:"^u et*"..

More generally, a .function

P:AXA--)B

is called a binary operation on A--'3,44.th values in B . .For example, if A

denotes_16,set of all cities in th4-United-Skatea
,
%the function which assigns

, . , qt

,..

to each ordered pair of cities (a
l'

a
-2

)
-

the minimum highway distance between, - ! ),

them (in miles) is a,binary operation ohW, with values in the set of real\

numbers. The_concept of_ commutativity is defined as before. -If B / A, then

the question of associativity 'does pot arise. ,

-



. . ,
t ... .

"If:-A,,B,C, are three sets,- and if f :AB,g: B -, C are
,-.

functions, then we can compose f' and k by considering their effect, in

that/ ogler, on elements of A : This leads to ,the following definition of
. ' f' , . - "the composite function gf : . #.

.

.

,

,

. ,4 .

gt:' 4 [(Y, C) : a EA ,:g(f(a)) = c) r
,

In other words, .c = (gf)(a) is the va%e=Of g on f(a) . No ambiguity can
. . .

arise if we omit.the par ohtheses n gf -Note that we, have denoted by gf-".
,

the composite fUnctic 'I.. first; theni,g" because of the way in which we

write the value of a'function on-4 particulai. 4ement of its domain; some

books use fg to denote "f first, then g" . This ie:soMetimesreferred

to as the "produce of f and ;g , but we avoid this term for reasons which
° ko , o

will become clear later InCOnsidering functionswhcise values are real

numbers we shall wish to cons er the jk-oduct of&ID functions b
....

y
. PI,

rthaltiplying values. The notation for thid1'-f f , should be carefully
...,.

- ,-.-ff--(A-- ,

'1*uialle from the notation gf , we introduced f. the compOsite

of g and f .) Observe that kf.41. = )3'= C , then composit' is a bing'y

operation on the set of all functions rom A. to P
1

The following diagram is use g composlion of functionii

The co posite gf is so defined that, st

' each of the possible "function paths" fr

(gf)(a) = g(f(a)) of C

, A

)--*Zx

I.e., we have

gf.

rtinig from an element a of A ,
4.

A to C leads to the, same element

(gf)(a) 94(c(a)'j)

f(a)

The Idea of composition can be extended to an ordered'*et of iliree, Or
77 ---,

more suitable functions; i.e., functions having the piopertytthat'-t-E-6-Fiiirge

of any one is Contained ingthe domain of the next, If there is a next.:-JIlhus

if f : A -> )3' , g : B -C h , we can form by -composition h(gf)

1,

20

4

,04,11L
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and We then have, for any

(htgf))(a) = h(g(fra))rj((hg)f)(a)

so that compositionlia associative, and we caii drop parentheses, and write

The ?011oWing%-kiagram,may be used'siMply. hgf for the compositefunction.

inTicturing this result:
S.

hg

hgf'

We can interpret the resulgs indicating that, if-lie_start from any element

a of A and proceed from it to D by, any of the.four possible 4function-

paths", tr}e same element of .D is reached in each case. Diagrams which

picture.setS and functions which pre rqlated in this.way, Ore called
.

comnutative'die rams. '4.4,
..., c

*
As we.shail use commutative diagrams a great deal, we slowdown here and

say a little morp'about them. First of all, a diagram1such as the one used
J ' 0

above (whether or not it is commutative) should be considered as a natural
. -

extension of the commonly used simple diaram for a, function:
. -

A

f
A -4B

The term "commutative diagrat" probably derives from oneof the simplest

examples of the use'of such a diagram: the commutative diagra which

cor esponds to a commutative binary operation. Let T ; A x 4 --4A be a
A

\bin ry\operation gn A ,'and denote f(al,a2) by a2;. 'Then the is a

natural functipn (p sky) on theeleMent's of A x A simply. reverses

tie order of he terms in each ordered pair: that is,, .p: (al,q2) -,)(aval),

Clearly is a 1-1 correspondence. If we consider now the following func-

tl.on,diag am ,

\,'V\

.

-1
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a

. ,

r

° then the diagram i$ commutative if and Only.if, for averyls(a
1/

a
2

we have

.

also a2 = a
2

(:) al

/

V

.
). ..

, n''In other words, the diagram is commutative if and-only if the binary operation
. ,,°. ." .

, X:
In order to be commutative, a diagram (of functions) must hare the pro-

as commutative.

'perty that every pair of_ composite functions represeneed (by directed "paths")

\

in the diagram, which have the sama domain and the same
,

"agree".,
\
i.e.,-they must be'the same function. If this

any element in the common domain of any;pair of suitablp

then the diagram is not ..icommutative

The earlier, diagram Which repreented the associativity of functional

composition, was commutative because of the way in which composition was

defined. This is a fairly common situation. But we shall also encounter

other instances of commutative, iagrams in which the commutativity is a

theorem, and not quite:so obvious,--1

image space, must

foi

composite funCtions,

Commutative diagrams haVe beet considerably used in more advanded parts

ormathematids (espaCially in algebra and algebraic topology). They are

particularly useful whenever we have a numlier.of suitably interrela4 sets
Ot;

and functiOns. Like any good diagram, their main purpose is id'to the

imagination: they frequently help us to piCture and summariz al

xielationships which can bequfte complicated when written out in "algebraic"

form.

0
e

*It is possible to prove theorems about"commutative'diagrams,Ibut, agiour.
Q ' 4

r use of `them is quite elementary;`, e shall not take the tpe to do this. An

CN example of such a theorem (which you can easily Prove) is the following;
.

x

to

Wit,

17
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Theorem. If each of the triangular "subdiagrams" in.:the following diagr4

is commutative, then the whole diagram is 6ommutative:
A

C D

. .

The ideas of composition and inverse can be brought together through the

notion of identity fundtion. 'For any set A the identity function IA is

thi 1-1 correspondence IA : A--+A for'which IA = a for every a e A .

If we have a 1-1 correspondence f : A -3B whose inverse is derioted by f2*,'

then we call 'compose f,and f' in tw-5'ways, and we get

f2f = IA. ; ff = I,
D

YOU should Check this, and that there is soTe,simaarity between the
AP .

composition -of
-o functions and ca on omultiplitif real numbers) with the -

. ..

identity function playing the role of the number 1 . Tecausf of this
..

similarity the station f
-1

is often used where we have used. ft , to denote
.

the inv rse ofla 1-1 correspondence f . We do not use the notation J -1.

...-.,, .i here, 'cause we need,it later to denote something different, but is not always
,sPit'

feasibleto avoid it. Inmost' eases the,sense'will be clear from the c..stext.

cs .
..;',,.. :v.,r.

7..:5"
r Frequently we havdNo deal with a function f : A -.),B., in a eitutetion

e

where there are relations KA , KB on A and B respectively In this case

we say that f iscompatible with (or preserves) -the ?nations A84,_, N3,_if,_

:(a. -,,a ) et th='(f(a
1
),i,(it-IrE K2'..= We also: say that such an f is a

...2.L.._
,-, .

.
, . ,

.\'llomomorphism from (A ,K )- 0, (B(..,19.: If,-A and k = KB , f , is -
E 4 A

-
., A

caaand-an endomOrphfsm of -(At-, K. f.
_

--- A...,. .
1

If, in addition tab; be.aig compatible yith the40,y'en. relations,,,` f is a ,,,r,
.,5,;1.19e4J,JJAJAVAJA

1-1 corapondencewhbee inverse- 21-4is also compatible-.with- KA-', KB ; then

we sayolbat f is an isomorphism of -A onto B-with respedt to the given

relations. We denote this by (A
' A:
K') Ai (B,E) .. If f maps' A- isomor--

.g. J .

phically mit° a pAbersubs4-16.1 B'; then we say that f is a.isomorphism
of . A ,into B . The rions of homomorphipm and isomorphism Ara keep re-

curring in-different contextsOpt they will generally have the same sort of

'-' meaning: we have two sets with some sort of:structure" (usually given by
,. `a .., .

relations and operations'-- see later) apd a function whieh"preserves the

structure".' It is a simple matter to show that the composite of. twohomo,-
. gp a

I - emorphismsjisomorphisms) is a homomorphiam(isOmorphism).' v

. 23a
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Important cases
15

f reiation-preserving fu ctions, w$51..chwe shall encounter

in this -splk occur when A.,- = R nu4ers,'and when

}tic= KB is one of the wellJknown order' elation > , < r, > , < . function.

f : R -4R which is_compatible with
,,or with, ds.gai4d,toi''ekweakly

>increasing, or orderipreserving; a funCtion which preserves >,or < 4as said._
to be increasing.' A function which reverses order (e.g., for which

a <ft ==4f(a) > (or >)-_f(b)) is said to be weakly decreasing (or decreasing).

A function which is either weakly increasing or weakly decreasing is,called

monotone. A function which i4 either increasing or decreasing is called

strongly monotone. A strongly monotone function,i's 141. A function which.. '
1

is strongly monotone apd onto (and.henOe correiponddbcq is cblled
c.

.. isotone (or 4.- °Stonic>. Thus an isotonic transformation is an isotqrphism .......-...4-,---.. .

with respect to he order structure of R . More precisely, an isotone

increasing function is an isomorphism-04 '(R,<) and (R,<),; an isotonel

decredsimg function is anispmorphism of (R,<) and (R,>) .

.
..... , .--. ...

----- Wheil dettling with a_function-f, fpom,- R to R , dt is sometimes useful
-

'to "picture" the function by means of a diagram In which'the domain and the

range are sdparately rpresentad by parallel copies of the number line, and
argutenkt, a 5 are joiried by directed line segments to their Values, f(a) .

-10T course, not all canbe draWn0 For example, such a diagram for a monotone .

increasing function might look life:

1

0
'

The monotone.increaslng proper y is,reflected in the fact that te two seg-,L

Ments's(drawnir not) cross teach other. For monotone ,decreasing functionp
' )'every two de!ments cross. You might find these ideas useful in thinking about

some of the exercises below. 1, a

A' 19 .24
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Ex- ercises 1-4.

1. Prove the assertion made above, that a strongly monotone function from

R to 'R is 1-1.

2. If you- are familiar with t.he,..riotion.of,ccu4ilki.,ty, alloy ,that a 1-1
correspondence R 4 R is isotonic if and only if it.is continuous.

3. Prove that the inverse of an isotonic function is aVo.isotonio, and

has the same sense (i.e., increasing or decreasing).

4. If f and g are monotone (or strongly monotone) functions in the same

-sense (i.e., both increasing, or both decreasing)` show that fg E-1421. gf

are monotone increasing (or strongly monotone increabing); if f and g

have oppositetpenses, then both composites are decreasing.
,

5. Prove that if f and g .are isotone, then fg and gf are isotone.
ar

6. Prove' hat the identity funCtion- I
R

is6isotonic and increasing.

We conclude this section with sortie furtherlconsideration of the various

notations used-"in the description'of functions:

, ts.

If we are dealing with a finite set (not too large!)' and a function for

which there is no particular pattern in the assignment of a value to each
.sit

argument, we usually list
P
he set of.ordefeepairs which describe the function..

.
.

For example, the state-of-residence function, for a specified set of beople

(the domain) could be described by a set of ordered pairs:

,
,

> .'
((Smith, Neork) , (Jones, California) , ' ) -----.

Anpther function normally desCibed'in" this manner',is that which associates

*,telephone number With each person in_aspecified domaii: you may regard
-,,,.......4.;.,

ephoile directory as gWng an organized, of the ordered pairs
, , ---, ..rr -- . -
dOrrespon ng to this function, As-far as this fluidtion4s concerned; the

_ . X,,

allAgbetical order' of the listing is rrelevint. ', ,-;

When we are dealing with a function whose domain and/or image space has

some "structure", it is often (but not always) possible tp describe the

function by means, of an equation, or in some ether way. For example; if

domain = image space = R = set of real numbers, the function f-lihich maps

every number into its square may be described by such notations as
"2 c"

y = f(x) = x ; f x -+x
2

Such notations are incomplete -- the domain

;

. ,

20
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1.
.

Must be specified. separately -- but they have advantages in other respects.

For example, we, cannot specify a function whose domain is an infinite set,

by listing separatelyt all of the ordered Pairs, wIlich go to make up the func-
O ,

tion.

When using the notation y = x , with domain = imageYspace = R ,

%,r ,1` or, rig.

understand that the function dIscribed is the set of thohe ordered pairs o

real :lumbers (x)y) which make up the truth set of the equation- y = x2

This idea is also used in situations-involving a verbal statement. For

example, welimhy define the integer part function f , whose domain is R ,

by

f = ((x,y) t x ,y e R ; y is the largest integer f r which x y > 03.

This integer part,of x is often denoted by' [x) that the integer part

*unction on R is also described by

f : {X}

x

A,

c,

t

Exercises,1- (continued) " ,

7. Show that the function f : R -4 R'defined by

4

f :

x2 fcrr > 0

-x
2

for x <

is isotone.

8. : x f(;) is monotone-on R (strongly monotone; isotone) and

a , b , c are Teal numbers, a At , show that

(a) x --)af(x)

`(b) h -4 f(x + b)

(c) X f(x) +

and hence

j x -)af(x + b) +c
a

are monotone (strongly monotone; isotone). Sketch suitable graphs to

help you. ko picture these results.

Avg

9. c d .arc real nuirb-erts, and,_ the functions on -R-...-,--

given by

f : x -pax + b , g : x'--,cx + d,
, _e__

,find expressions giving the values o fg and 'gf , at x.
4

21
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1-5 ;'The' Algebra of Real I' "ued Fu nctiona
.,* ..6 R, : , ,6. We'introabLv fi the notion of . equality of functions. Two functions

. .
f aid g are said to be equal prov-Ided that they have the same domain, and

.provided that for every element If thp &
-

main, f(a) =.g(a) plearly,

equal functions determine the same set of ordered pairs; and equality of,
. ,

.,:.functions'is an equivalence relation:

o

_._
.

.

,

Let A' be anyl-get, and let R be the set of real numbers.' We use RA
,.*

to denote the set of all functions from A to q11 . The motivgtion for this

notation lies in the exercises' below. .

-.1)
, .

Exercises i-5

1.- Prove the assertion made above, that equality, of functions is an equiva-

lence relation. -

2. Let A and B be finite sets containing a, and b ;elements respec- °

tively! Prove that 2' (the Set of functions from A to B) contain*
.

ba elements.

3 Let A be a finite set with a elements, and let S 'denotethe set of

- all subsets of A . "Let lB be the =45.:'ement set, (0,11 . If ' e S

421e., any subset of A) define fT : A -4B ,.(i.e., fT e BA.)

a

i0 if X T

1 if x e T .

sr S BA

by

-Now define:''

by F(T) = "fT and'ahow that

(g) F is 1-1 and onto;

(b) 'S has 2a elements.
j '

(For this reason the symbol 2
A

is sometimes sed to denote the set pf

all subsets of a given set A,, whether or not A is finite.)

The dlements of'the set -RA are functioris. Particular elements of RA'

which can be singled out are the so-called constant functions: corresponding

to each real number .r , we define.the constant function- r : A -*R ,'by

r(a) = r for every a 0 A . Important constant fuqctions are 0 and 1 .

2
22
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Operations*of addition and multiplications can be defined on the set,of

functions .R
A

, by using the corresponding operations in R . It is customary
,.....-

.

to use the 'usual symbo's, "+" for addition of functions, and '1.1: for
f . ...

...-,-,..

multiplication of functions. Thug if

we define
.

f
1

f
2

= C(a ,f
1.
(a) + f

2
(a)) : a e A) ;
.

1 2
f f = f(e ,(f

1
( a)) *(f

2
(a'))) a e A) .

f f E
RA

RAClearly fl + f2 and fl f2 belong to R- , which is therefore clos
o

under addition and multiplication. You should verify fo r yourself that this

addition and multiplication are both associative and commutative; that the

multiplication is distributive over the addition; and that 1 f = f 1 = f

and Of=f0=0 for all f ERA.

For each function f c RA we can ,pine a unique negative, Or additive
o r

inverse, -f e RA by

and we readily verify that

-ft = [(a , -f(a)) : 'a. e A)

f + (-f) = 0 .

/

Subtraction of functions can, no introduced - n the usual War.

.

You might be tempted to think that RA has all ofthe algebraic s trucri"

ture of the real nuMbers, but this .is not generally the case:
4 '

Firstly, while. all non-ze;oreal numbers have multiplicative inverses,
.

-we can define

fl rj;:y.
) e A)

o

A

only for those functions f whose range doss not include the number zero.

(In geneal, the sat of those functions whose range includes,zero-contains'

much more than the constant function 0 .) We pall f-1 the multipli.cative

,

inverse', or reciprocal of . If f exists, we haVe f .f
-1

='1 . We

f
'1

can define division by = f g-1 only when 0 range,of g . One con-
g

sequence of this restriction on the existence pf multiplicative invelTegia

that the set RA can ha' what are called divisors of zero. These are

A

b32
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elements f , g , su,oh that f / 0 , . g / 0 but 111, g .= 0 . Yoti should con-

vince yourself that such fUnctions exist, by constructing examples./
,L1

Secondly, we cqn set up an order relation in RA by the dtfinition: ,,a

f < g"provided that f(a) < g(a)/ for all a eAl but in eneral, this

relation' is only a, partial ordering, Whereas
the corresponding relation for

the rea l numbers is a total' ordering.

J ' ,

Exercises 1.:2 ,(continued)

4. Let 'A be a 2-element set. Find fUnctions f -, g e RA such that
..

f i. g and g i'.. f ,. f
.., .,

.
I

f
/"'-5, If A has exactly one elements\ show that-the sets IRA and R are

isomorphic with respect tq-their''algebraic opei.ations
and order structures.

,,, ,> ."----it.____2 ..__-4'
/

. ,

. i

Apother operation,-which *, cdn,14e flti-40.a -4-tirt,Fu ia'a&ofom/ ....- ,--., ,.. ..---;.r.7 I-
_

A.' to R ,' is the so?called 'lia'calar15Ult pli,cationT, of elements of RA by ., ------

.

real numbei-s. Let' r e R 'and f e iik.-..1''then we define rf : A ;+R by. ,.-.,

("tf)(a) ir'"(f(a)) foil ail, a e A

This "multiplication" is relatedyto the notions of' constant function and the
multiplication of functions:

, s'e Exercise 6,below.

j

ercises (continued)

6. With the "notation aboVe, show thai

tN
a.

-where r : a r , for every,_ ;a e A

-

7. If n is a positive integer,s!'and f : A - R sho'w that

of = f + f + + f (n tOms).
>7

(a) 'Prove that addition in 41A. is commutative and associative.

(b) If p , q -are real numbers, and f , g e RA , prove that',

4*

(i) (pq)f = P(cif) =4.q(pf) ;

(ii) (P CI) f "^" pf 4-Vsj ;

g) pf + 16t

( 1.4r) if = f- .

29- , "24
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9. If f g are one (strongly monotone; isotone) functions in the

,

same sense; froi R tq R , show that

(a) f + g is m notone (strongly \QIlotone; isotortein the same sense

'as f 'and

(b) if r > 0 , is monotone (strongly monotone; isotone) in the

same sense as. f ; . ,

(c) if.....r..< 0 , rf is monotone (strongly monotone; isotone) in the

/Vopposite sense f . /

A particularly imPortaq function space 4.s
I

set R
R
, themell known.

.

'pet of "teal functions of..a i\eal variab .

-,'

is case, in addition to the
,

algebraic struCture for tyre s't
R

as deskrib d above, we can compose func-

Thus

tions: the Composite,of tyo.functions in R
R

. also a function in R .

we have the additional binary operation of composition in R
R

. Thi's

o erat' 'n is asso ative, tut not commutative. Composition is related in C

of int esting was t the,otIr r operations in R
R

, but it would take

too/ fat field to investig e thee,Irelationshipa fully.

42.1SiMilarity Transformations and lSi ilar Functions. A subset Of R
R

whiCh

. .. is important in questions of measuri ement, is the set of those functions which

-.\Ellq-ashc(Om the multiplication of every number in R by a fixed number. If
1,.

1

,

k e R , gdenote the 46tresponding_function b'y the symbol i . Thus

// k : R --4 is defined by-
,-,

IT :- r -t kr , for, all r e R .... P

.o . i
. .

1

It is.frequently convenient to denote the function k sitply by. the number

k , but we must.be careful not to confuse it with the consta4 fUnction, k .'
1 .

"These functions are related to the identify fupAion IR iry a simple
v . ..

k = kI
R

= k I
R

If this is combined with ,tie results o/f the exercises.' ,_

',; abb j we obtain thee following properties/for .k :

/

.- -

*4"lt,Piv4-tr- (i) if k # 0,t is 1-1 odr;lesiondence,frOm R 'to itself;

(ii) if k > 0 ,

t
1 41,014gTLRe-§

( i.#)
....,

if k < 0,,, k'is ilsOto everses 'order;

: ......_ .:_ _t .--` -.-- _, , :

...--..., .

1-1 and strictly monotonic)



(v) if f : R :then

kf = kf = (k PI
R
)f .f = f .

This result can. be pictured, using the commutative diagram:

f

kf

,

= k I
R

S.

and noting that if we starts from any element a of A , move
by f to its value f(a) in R , then dowi by T.to T.(f(a))

we reach the same element of R as if we had gone directly to

R ,by ;,kf,. If A = R , observe that, in general, kf # fk .

'(COnsider f : x*--)x2 .)

If k /0 ; k is called a similarity transformation,.Or similitude, of,
the real..numbers. A similitude transfqrms any subset of the real line into

a similar subset, 'in the geOmetrical-kense. If '0 <k,< 1 , k could be des=

cribed asa""uniform contraption"; if4=k >1 , could be described as aA
,"uniform expansion".

If f and g, are two functions from- A to R , and if there exists

/_,O)suChthat g = tb'en f and g are said to 'be similar'
6

functions'., If le > 0 , f and a said to be positively similar fpnptipns.
In connection with measurement, setstof pitively similar,

fe),
os

/values in'the set R of positi eereal numbers) are extremely pomwon. (E.g.,

-

the set of all length functions, with a *mmon domain.): When, .dealing with,-,
such furictiorie% 'we Usually omit t e word "positively", and refer to them simply

44 1as- "similar functione. Similar ty, sind%positive similarity,. are .equivalence'ivelationsi . ,
,. ; .

. 1 ,
, . A similarity transformata on R is a speciarcse of a linear function.

. .. , ,A linear fUnction on R 'is a unction f

: ax f b

.where a , b are Piked real'numbers. If a / 0 , /the- linear function is
0non= singular; such a function is also known as a col nial function of the :-

*. first degree. If a /0 and b = 0 , the line fsnCtionisc*.similarity
transformation. If a = 0 ,,the linear functi ii/singular:, a singular
linear function,,,on R is, of courser a const nt.kuhction.

'31
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6 A
Exercises1-5 (continued)

10. Assume that f,:,x.-,ax + b , g : x -+cx + d are linear functions

on R., and let k e R (k # 0) . ,Prove. that

(a)'' kf is a linear function; kf is non-singular if dnd only if f

is,non-singulgr;

.(b) if' f and g are non-Singular, then f .g is not a,linear

4- . function;

(c)' f + g is a linear-function; f + g is,n6h-singular if and only

if a -c ;

(d) fg and gf are linear functions; fg and gf are !on- singular

it and only if f ane g &re non-singular;

(e) fg = gf if and only if ad + b = ;

. ,

(f) fg = gf, = IR if and only if ac = 1 and be + d = ad + b = 0';4

(g) 'I
R

is linear;

(h) every non- singular linear function f has an inverse ft (with

respect to composition) such thi.C,f11 is linear and nOn-si ar,

and fft = ftf = IR ; ,

(i) if a > f is isotonic increasing; if a <0 , f tonic

decreas'ing.

11.' If A # 0 , prove that

1-5

(a). similarity is an equivalence 'relation on WI ;
+ A, A 4'

"00) .positive similarity is an'equivalence relation on (R ) and on R-;
4

(c) all functions in -RA are similar.

--
1 */,

-V
As you are undoubtedly aware, the graphical representation of a linear

functiodin the cartesian plane is a straight line. You might find it help-

ful to use a'graphical picture when working some of the above exercises.

. .

If you have takentacourse in
,

calculus, you will have encountered"many
.

o'f the ideas mentioned above, but not in a context whiCh emphasizes .tIte
,

R
algebraic structure of R . You will recall that, in differential calculus

we are interested in, those functions _,from RR (or from RA , where A is

a specified ubset f R) which have derivatives. This is theoubsetof

,so -called differen able functions. e development.._of the propertiee of

derivatives, you undoubtedly discussed rf11ps .for diergntiating,pumeof

functions,, products of functions, quotients of functions,\614iples,of func-

tiOns by_real numbers,"tand functions of functions (i.e., composite functions).

27
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These various
operationayer_e_preciselyfthose which we have discussed above, Ibut restricted-to the subset of differentiable

functions; Thusidifferentia-tion-itsolf is a function whose domain is the get of. differentiable functions
RR.in

R___,-aneWh3Se values-(not
necessarily differentiable) lie in R

R
; andthe Various

"-xuleslof-differentiation express the relationship
of the derive-

_

tive functiOEtu the algfil-aic structure of RR .

Another situation which arises in, connection with measure functions;
(espe611155gation tO'n:Clerived" measures, and "diMension")

concerns thesubject of induced functions on cartesian products: Suppose that we are giventwo functions'

f : Al -) B1 ;1,
A.2 B2

Then f and g induce, in a natural way, the functionf x g Al x A2 Bl x B2 , defined by

f x g': (a1,a2) Wei) , g(a2)) ; (al e Al, a2 e A2)
. 1.

If Bl'= B2 = BZ,''and
there is a' binary

operation on B (such as addition,multiplication, or division) then f x g can be - composed with
the binaryoperation (which, you will recall, cln be considered

as a function from,B x B --B) to give a mapp,I.ng from Al x A2 into B . We' shall see' anexample of this in connection with the relationship
of length and areafunctions, where B = R

+
,wand the relevant

binary operation on R+ is
,multiplication. Other examples concern angular measures and velocity measures,where the relevant

operation is division.
These and related questions 1-Idimension'l Will be considered in a later chapter.

\
Linear and Homogeneous Functions.. Let a,x,beR.

Apolynpmial
.

.

ax + b (a 1 0) of degree 1 , determines
a non-singular linear 'function

6

x --ax + b . This polynomial is homogeneous if b = 0 and the corres-ponding function f : x -,ax , satisfies the condition f(kx) = kax) for
ievery positive k . Such a function is said to be a homogeneous function of:.degree' 1 ina single variable, or argument.

These ideas can be geperalized
to define concepts,of

linearity and homo-geneity for functions of several variables (i.e.1 on a finite-cartesian
product ItR , or on some specified

subspedeoarthis produc.) Another,genpralization leads to the more restricted,not ons of'multilinear and multi-
,

homogeneous fUnctiOns, which we shall encounte in connection /with the treat-ment of derived measures and dimenSions.
we introduce these ideas her,

3 28
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in their simplest fornk(i.e.,.with domains and imaggspaces derived fromlthe

real numbers) and cqnsider further generalizations as the need arises.

'A, function f r R x R R ±s linear if and only if it has the following

properties:
. 1

.
.. .24.,

( i) for every (xl,y1) and (x,;y,) e R x R ,

-

a a

f(xl + x.,, yi + ye = f(xl,y1) + f(x?y2)

.

(ii) for every . (x,y) e R X R ,,and every k e R-, f(kx ily) = kf(x,y) .

Remark: Perhaps you are surprised that the second property should be required,

as it is a "homogeneity" condition; that is, our definition is really a genera-

lization to two variables of the notion of a homogeneous linear function of

one variable. It so happens that the notion of homogeneous linear.functn-,is

the important one in generalizations, and the homogeneity property is there-

fore included in the definition% Thus our (generalized) linear functions are
P

all homogeneous, and our multilinear functions (see below) will be multihomo-

gene6Us. Many writers use the term "linear transformation" (especially in,

generalizations to so-calked "linear spaces") where we have used "linear

function"; a linear transformation is thuS a homogeneous linear function.

It folloWs readily, from t e definition, that .(x,y) + 3y is a

linear function onRxR, d that the fUnctionr (x,y) + 3y + 1 is

not. The efinition is ea ily extended to the case of a finite number of

real var ables.

A function fk: R R is defined to.be homogeneous if and'only if it

has the property that there exists a fixed a e R , such that rbr every

. k > 0 , and every x e R

f(kx) = kaf(x)

The number a is called the degree of f ., An,example of such a homogeneous

function is the function x 2x3 . The definition ,can be, suitably modifibd
-

to appl to a function whose domain is a subset of R . (E.g., the function

x4--> 3x7'2)

The concept of homogeneity -can be simply extended to'functions of several

real variables; we give the definitiocor the case of two variables only. A
0functions f:RxR is- homogeneous (of degree of.) if and only if4there

exists a fixed a e R , such that for every k > 0,, and every (x,y) eRXR,

29
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4

f(kX,ky) = kaf(x,y)

This is the natural genexalizErtion. of the Idea of a'homogeneous polynomial

function; e.gr the Tunction (x
e
y)

2
+ 3xy + 3y2 is easily shown to be

homogeneous of degree 2 A npnpolynomial example is the functioit
-4 --

x ; which is homogeneous of degree 0'. You should observe'.
# p -7-7

x + y
that, with the definition which,Ve have given for a linear function oftwci or

more variables, every such linear function is homogeneous of ,degree 1 , but

the converse is definitely fain, (See exercises below.)

Multilihear and

and multihomogeneous

notions of linearity

two variales only:

Atunction f :

foilwing

(i)

4;
properties:

for every .real .xl , x2 , and 312 , 4,,

f(xl + x2 ,y1) = f(x1,y1) + f(x2,y1) , and

f(xl "r1 Y2) f(x1'Y2) ;

44'

-,-'

Multihomogeneous Functions. The; concePts of multilinear

function are more restrictive gOeralizations of,the

and homogeneity. We give the definitions for the cast of

these definitions are easily extended.

R x R .-+R is bilinear if and only if it. has the

(ii) fbr every real x , y , and k , f(kx,y,) = f(X ,ky) = kfx,y) oC-1;

Observe that the second property is again a homogeneity requiremsnt: it
_.-.....

implies that every billear function is homogeneous of degree 2'.. Every
1_ -. %

bilinear function is alsr-bihomogeneoud (see below) of degree (1,1) . An

k
apple of a bilinear function is the function (x,y) +>3xy . '''Y

A function ,f....:R-X R .".>11 is

,. re 1 al , a2 , such tf.1,10for eve
t-e,..,., ..,-

f c :,

le.,-,, k .-- /o14.4
.-x-,,,

.

4. 4---- 2 ' .. 4,00% . i : .1.-

',.-- ;>.k.:-:''''''. '---,
, 4,,

."- , al -a2
, .:. f(k1x-, k2y).= ki ,k2 .f(x,y)

"r A

Ay) e R x R , and every posltive real

eneous if and only if there exist

. % . .
.4

The ordered pair of,real numbers (a1,a2) is called the degree of the
.)

,

r "-

0 ,

bihomogeneous fuhction. (We also say that such a function hastdegree al inc.(

x and a 2 in .y .) An example is the function, (x,y)
/

bihomogeneous of degree (2,3) . The function (x,y)
s

- ft
1 .

domain 11 x , is bihomogeneous of degree' ('-3
)

el

40.
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Exercises 1-5 Uontinued)
.

12. If f R
+
-4R

+
is a homogeneous function of.degree a , prove that

there is.a ceR+ such that for all NeR
+

,,f :x-4 cx
a

; hence

f' is homogeneous-of,degree zero if and only d.f it is a

.copstant function.

13. If f : R x R -4R is a polynomial function; prbve that f is hullo-
.

geneous of degree' n' (n a positive integer) if and only'if all of its'

terms have'the same degIee, n . (This latter property is, of:course, .

the usual definition of "homogeneous polynomial of degree n" :1.

7-- '

14. Prove that for each positive integer n, the function
n n)1/n +.. +, . .

IJ'
.

, defined on R ogeneous of degree,

1 ; but it is not linear unless n = 1 .

. .

,15. ' Prove that every bilinear function is homogeneous f degree 2 , and

bihomogeneous of.degree° (1,1) .

7
,l6. f 11 X R -411 iS",bihoMogeneous of degree (ai,a2) . Prove that,

+ al a2
,

(a) there is a ceR such that f: (x,y) -4 cx y;

(b) _ f is homogeneous of degree al + a2 ;

(c) f linear if, and only if al =-0 , a2 = or al = 1 , a2 = 0 . e

17. Find examples of homogeneous functions (of 2 variables) which are not
0

bihomogeneous.

18.. If you are familiar with the notion of "Venn diagram", draw a Venn diagram
-_ _,, t

which illustrates the relationship of the sets of,linear, bilinear, hOmo
,'

..,,.

geriems, and bihomogeneous functions from Ri. X.R+ to Ili-.
i ,

.- 19.f and g are homogeneous functions'with the sate_domain, Ancrwith

"d6grees al , a2 , respecti ly.

(a) Prove that f 4: g is homogeneous if and,only if 0i= a2 , and

that, 4i ,this case, the degree'of fi f2 is al .

(b). .Prove that fl .f2 is homogeneous of degree al + aa .

7

'20. If f : R -R
+

and g : R
+

-411
+

are homogeneous functions of degr s.

.
a.,
I

and a2 , respectively, provethat the composite functions fg

and gf are each homogeneous of degree aia2, .

31
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1,6 Sop Special Sets of Functions,.

Ip this, section4we introduce some special,sets'of functions, most of which

have the structure of a group (or a semigroup) with respect to the opeAtion of

composition. These groups area used in. the ngxt section in connectioh with the
-

classificatillit of measure functions. [For, a moredetailed introduction to
.

group theory, including most of the groups discussed here, see [7] .]
-.......- ,---

a

.....

Before discusging thes4e particular groups, we introduce the canie pt of
,

group form511y,.and summarize some of toe main group ideas which we shall
,

I
' need. A group consists'of a non-empty set G ,` together with a 14nary opera--.

.tion on G (the'value-of this operation on (x,0' is indicated in this

definition_by the juxtaposition xy) such that

i

-,

(i) G is c osed undei the operation. (Actually this is implticit,

in the equirement of a binary operation on G) ;

(ii) the operation is associ ative;,i.e., if x , y , z e G., then

.(xy)z = x(yz) ;

(iii) G contains a spedial elemiit e , called an identity element

,(A null element), such that

ex = xe.= x for all x E.G ;

.v (iv) corresponding to each x e G , there is a inique element
-1,

x e G`, such that xx
-1

= x
-1
x = e .

.

The element. x
-1

is called the inverse of x with respe to the given

operWon.

'A group G is calledabelian, or commutative if for eachndhir'of

elements 'x y", of G

4

xy = yx .

A non-empty subset of a group,,which is itself a group with respect
,

the given group opdl-ation, called subgroup of the original group.:

.0$
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.. .... ExerOne416
:..,:- . -;-

.r.

1. Verify that the following sets and opetakiong are group
-,.

(a) the iniegers kor the rational numbers, or the real nuMbers),
,,

r=under addition; - .

_...- .

.

.
, ..

,,,,,, .

(b) the non-zero rational numbers (or the non-zero real numbers),

under multiplication;
, .

a

(
(c) the positive rational umbers (or the positive real numbers),

under multiplication-;
,.

(d) The equivalence classes of integers, mod 12 , under eddition;.

(e) the equivalence claleSof integers mod 7 , with the zero class

excluded, under multiplication;

(f) the set of all 1-1 functions of a 3-element set onto itself,
. t

under function composition;

(g) the set of linear functions on R , under composition;

(h) the set RA of all functions from a set A to the real numbers

\'
R , under ad tion of functions;

(i) the set RA of all functions from a set A to the positive real

numbers R
..1..,

,.under multiplication of functions.

1-6

2. Whichof the groups in the previous exercise are abelian?

3. If G his a group, H C G ,show that H is a subgroup G provided

that '

(a) hih2 e H , for all h
1

,-h2 in Hl(i.e., the subset H is

. *closed under the group operation);

(i) e H ;

(C) h e H v'

4. 'Show that the set of even integers is a cubgroup of the group of

integers under addition.'

5. Show that.7.th.g.set of non-zero rational numbers is a subgroup of t

group of non-zero real numbers under multiplibation.

6. Show that the setwof positive'reals is a subgEole/Lttrg211.2ILL

non-zero reels under multiplication.

r
7. Show that the 2-element set (1,-1), ins a 'subgroup,of the group.of

non-zero reafg under multiplication.

Sv

.

33
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,
0,

. Show that the relation p defined on th,...es_e_t (Hi) 'of all,subgroups
AP'-of a group. y: ,

..,.. _ _ .1. I.

'. .3..
. ... _.. .., ..-

H
1

p H
2

if and .only if H
1

is a subgroup of H2 ,

s
Z

. -,-

)is a reflexive, antisymmetric, and transitive rela,n;.,5.1
.

partial order relation). " -
. .

Permutation Groups. A permutation of a finite set of Objects is a 1-1

mappinglof the set onto itself. In other words, a permutation is just a 1-1.

correspondence. Let A = (al ,a2 ,an)- be °a set Of n objeots, The

permutations.of A can be composed by flanctional composition, and the com-

posite of any two permutations is again a permutation; the composition opera-0

tion is associative; the permutation IA is an-identity element for the set.

of permutations; and each permutation is 1-1 onto, and hence has an.invprse

, with respect to composition. It follows that the set'of all permutations of
a

A is a group under composition. This Very important group is known as the

permutation group ,..on- symmetriC grOup) on n .objects, and denoted by P

The definite article is used because, for fixed n , the nature of the n

objects does not affect the'structure of the permutation group: 'all permute-

% tion groupshon. n objeCts are similarly structured or isomorphic. This is

another example'of'the idea of isomorphism: .Two groups are isomorphic if there

is a 171 correspondence between their elements which preserves the group strueZ

ture. (Actually ft is sufficient to require the existence of a 1-1 correspon-

dence which is compatible with the,group operations: see Exercise 9 below).
L

A 'flinctfUff which is ,cotpatibleth the group operations, and which 16 onto,

but not necessarily 12-1, is celled a homomorphisti. Thus an isomorphismAs,a

1-1 homomorphism. '(See exercises below.) An isomorphism of a group onto'

itself is calked an automorphism.

.

A function which maps a group G isomorphically onto a proper subgroup

of a group H , is referred to as an isomorphism of G-,:-'-nrcr 11,.. A homo-

morphisp into is similarly defined. A homomorphism of agrotp to itself

(onto or into) is called an endomorphism.

Homomorphisms

If G .and H are

a function f x f

are convenient17 pidtured q' means of commutative diagrams,
-._... , ,-

groups, a function f : G-4H induces (in ,a .natural way)
,..,

: G X G -41H.x H as deicribed in Seetion--1,15,____If the
,

4 --
vertical arrows in the following diagram indicate the group operations for ..

G and H , then 'f is a omomorphism,of G into H if and only if the

following diagramds commutative:

, . 3 9 34

r



'fxf
G

e
t

G .11.H

11-

,

*

The isomorphism of, the permutation groups on equivalent sets, isit

directcormequence of the 1-1 correspondence of the sets of'permuted objects.
.

You might be tempted to think that isomorphism pf goups is always this

simple, but this'is not the case. For example, ifG denotes the group of
..

positive real numbers under multiplication, and H the group of all real ,

numbers Under addi tion, the Action

.

is an isomorphl5m from G -tq,

f x -> 1og10 x',

a

Exercises 1-6 (continued)

9. G and H are groups and f - H is a 1-1 correspondence Emote

homomorphism (i.e., f(g1g2) = f(g1)f(g2) for all gl g2 e G ).

Show that f satisfies)

(a) f(eG) = eH (eG , eH are the respective identity elements),-

.(b) f(g-1) (f(g))-1 for every g .

---Thus t presea4es products) the identity element',, and inverses (i.e.,

the vhdle group structure) and hence f is an isomorphism.

10. Prove the asp ertioxt made above, that f : x -'
10

x is an

isomorphism from the positive reals under multiplication to the reels

'under addition. 'PP

-ZVQ.
, -

11

J
What is the inverse function to the f of Exercise ia? Isthii also

P

an,j.somorphism? ,--.-

12. Show'that the composite of homoTorphisms (of grofips) is also a

hiommlorphism, and that the composite of isomofplIsms is an isomorphism.

13. If k # 0 , show that -qhe function

f x -,kx

is An automorphism on the group of real numbers under addition.
--

35
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4, . -
r

.
.

. .4.

P_m contains n! elements.

.

15. Show that each Of the groups P
1 '

P
-2 '

is abelian, but that P
3
'is

not abelian,

.

.

.....//''-

The set of all 1-1 correspondepces of a non-finite set (e.g., the real

numbers) with itself, is also a group under functional composition. as you may

readily check. We use the symbol PR for the group of 1-1 correspondences of

Although the word "permutation" is usually used- only in t'he finite case,

it is sometimes convenient to refer to Ea-as the permutation group of the .

4

real numbers. The functia IR is, of course, the identity element of Ea.

The Isotonic Group. You will recall that in Section-N4 we defined an.\.,

isotonic transformation of the real numbers as one which was strongly mono-

tone and onto (and hence 1 -1 .and continuous). In the exercises of Section-

1-4 we asked you to prove that
'

(i). the composite of.,two isotonic functions is isotonic;
0 .4

(ii) the identity function I
R

is isotonic;

(iii) the inverse of an isotonic function is isotonic.

If you did not prote these before, you should do so now. These properties,
.".$and the tact that-composition of functions is always associative, show that the

set of,isotonie functions7is a group under composition. Observe that this
Istr. ...04

0014, which we call the sotonic group, is a subgroup ofAhe g6i60,UP,P
R

.

,14.-., .
.

. : 7We denote'the:isotonic by the symbol I .

.

. .
_

.
. ,

In another of the e ercises of Section 1-4 y*.10ere asked,to show that
,. ,.

L.% ..

), (1) the composit pf two strongly monetone increasing functiOnsiis
.

I. 0 strongly moil one increasfbng;`,
I

(ii) the identity function is isotonic increasing;

(vill) the inverse of an isotonic incredsing-function is isotonic

increasing. . _.,
, -'

.

These results:show that the set ofiSo-eonic indreasing functions forms,

., . A subgrouPof the isotonic group. By analogi'with the multiplicative pro-,/
P perties of the real numbers, we mil this subgroup the positive isotonic

si .
. ,

-,4group, and denote it by the suggestiVe nbtation I
+

t .

e

36
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'
,Exercises 1-6 (continued)

16.' By means of examples, show that neither 2 or I. is commutative.

e

The wine Group, A linear, function f ; x -4 ax + b on 2-7S/also

called: an Erffine transformation. A non - singular affine transformatipn is a

. function

f ;,x ,ax + b ,

1-6

with a / 0 .

In Exercise 1-5.10 we asked you to prove that if f and g are non-singular

affine transformations, then

(i) fg and gf are non-singular affine ansformetions;

IR is a non-singular affine transformation;

(iii) every such transformation has an inverse (with respect to compo-
i

sition) which is also a ...non-si an affine transformation. ,

It 194.lows,,that the s' 1_ of all such functions on is a grow r' compo==---

''' 1

, sition. . This group called the affine group on '> or the 1-dimensional
,

af fine group.' We denote this group by he sy,m 1 A .

1 ---
A non-singular affine transformation x -4 ai + b &n be regarded as

the compsite, of a hombgeneous non-singular linear transformation, x -) ax ,
1, =

and a translation,. x 4 X b , in the given order. It also the composite

of the e translation x --> +1)-.and the' non-singular
a

x -$ ax , in the given order.

inear afisforin44on

\,/

1,1/

Exercises 1-6 (continuad
-,--

. .

17. Show by means of 'examples that A is not commutative.

18. Shm; that the homognneous, non-singular *linear transformations

',
x -r

\

ax , a / 0 form a subgroup of A_ .
,

i

19. Show' that the translations ix -r x.+ b form a subgroup of A .

..

ii

We consider next those' liftine transformations f : x -r ax + b for which

a > 0 . - For convenience we call these functions posiy.ve affine transfOrria-

)

tions. It is a simple patter to,verify. that ;_

37
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t is

'r

(i) -ts'he composite of positive affine transformationsis positive;
r

Il

(ii) ,SIR is a positive affine transformation;

(ill) the inyerse
.

of a potit,iye affine transfottAtipp ip,affine and

. ,

Xormations c4.jit',Erfftile group.

t4r--* it ,a4T- 6g-tivg.:affine group: (of

Thus the positive affiBg_.

We denote this_ by 44:'

dimension one):

We examine'next the relationship of the affine groups tp the isotonic
_

groups dii.cussed earlier. As we saw'in Section 1-5, a non-singular linear

function is

increasing.

, groups I ,

isotonip,and a positive non-singular linear function is isotonic

Hence the affine groups A , , are subgroups of the isotonic
+ . 47

I , respective/y.

The Similarity Group, In the discussion of the affine group you were

asked to show that the set of transformations

f : x -4.ax ,

formed a group under composition, and that.this group is asubgiodp of the

affine group. We call this'grOup the similarity riroup,on R , because of the
110

connection of the transformations in this group with the notion of similarity .

in geometry. (A similaiity transformation on R is thesame as a non-singular

'homogeneous linear transformation on R , buttrthis is not true for the corres- °

ponding transformations of the plane and higher dimensional spaces.) As we

Sal; in Section 1-5, individual functions in theLsciFilarity group S are

called similarity transformations (abbreviated to "similarities"), or

similitudep. We ca,11 those similarities for which a > 0 , positive similar'-

ties. You can easily verify that the positive "similarities Corm a subgroup ,

of S ., We denote this by e

The**lationship between the various groups of functions introduced in

thissetion is exhibited in the 4pllowingdiagram, in which each arrow in-

dicates that the group at the tail of thearrOwds a subgroup.of the group at

the head. It follows from the t4ansiVity cif the subgroup relation that each

group it a subgroup of any group1,reached fom it along a sequence of arrows.

The arrows may also be thought o as 'representing the natural inclusion

IIIIEtL1,-which map each element'of a subset of a set, into itself.

; .



20. Show that ,S and

-

S

-14

/-%

/-Exercises (continued)
-

are cOmmUtativergroups.

At

4\
21 Show that S is isomorphic to 'the multiplicat V upiof

t

numbers, and-that S
+-

is isomorphfc to the multiplicatiye

positive real numbers.

1-6

non -zero real

group of

Semdgroups. We shall also need the more general ideas of semigroup and

ordel-ed semigroup, sowe explain these briefly :' A semigroup is a set of ele-

ments, 'together with an associative binary operation 4n the set. (This implies

that the set is closed under the operation, but that is all; it is not

necessary that there be an identity element, or inverses.) It follows that '

.
every group is,a semigroup, but you can easily'find examples of semigroups

which are not groups. (See exercises.) the operation is also commutative,'

the, semigroup is said to be-abelian. If a right-cancellation property holds

(i.e., ab = cb implies that a = c) the set is calleda'right-cancellation

% semigroup; if both right and left cancellation hold, the set is called 'a

cancellation semigroup:
..'

.

A semigroup H which has an order relation p ; linked with thesami-

- group ope'rationiy the property: a fib implied' that ac p be and ea p cb
:-

for all -c e H ,, 'is called an ordered semigroue. A group which is an ordered

semigrouk is called an ordered group.
--- ,

1 ...

The concepts of homomorphism.and isomorphism are,defined for the Various

types,of semigroup in the natural way, and it is easil4y,shown that the corn-,
t d

.1, , ,
posite of two homcmorphisme (isomorphisms) is a homomOrphism (isomorphism).

4.4

r

,i

,

4
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'EXercises 1-6 (continued)
,o

22. (a) Show that the set of positive integers (positive rationals;

positive reals) under addition, with the usual ordering "<:': , is

an ordered abelian semigroup with cancellation.

(h) Similarly for the set'of all integers (rationals, reals) greater

than some fixed positive integer (rational number, real number).
..

23. 'Similar to Exercise 22(a), but with respect to the operation of multi-
plication. In this case each of the seMigroupS has the additional

property 9f, possessing an identity element; which Of these semigroups
4are groups?

24. Show that everrgroup is a cancellation semigroup.

- 25. Show that the set of all real numbers is a semigroup with identity,
with'respect to multiplication. Is it n ordered semigroup? Is it a
cancellation semigroup? Is it a group?

) Show that the set RR of all functions from R to R is,a semi-
/

kgtoUp with respect to composition; that it has a left and a right
i. entity; that it is not commutative; and that_it is neither a
right nor a left cancellation semigroup.

6(b) Show that if f,g,heRR, and if
.'

(i) gf = gh and g is 1 -1, then f = h;

i) :fg = hg and.',g is onto, then f = h.

27. ShowAhat if m n are any poSitive integers, than the set of all

. ,

4
transformations n on thezositive integers, defined by

-10
4

n : 111.-!onm

i

is an abelian"cancellation semigroup with identity, under composition;
.'and'that it is isomorphic to the semigroup of the positive integers

'

Iunder multiplication,t 4, 4
t . T.28, Similarly to Exerdiee'27, but fOr the set of all transformations ,

n --.4.--,,._
i

'',..
f'. defined by

1

.,

i
iik ,

n ' \

...

'on the set. R of ,411 real numb*s.

29. Prove tha, an ordeed abeldan semigto
t

a cancellatip
1

n semigroup.,
1

1 .

'

1

t

.1
1

Sre:445.7-)19..

- '«`'451
,

14...4:441", _1
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a

30. (H, +) ,is an ordered abelian semigroup: Prove 'that the relation:

(a,b) (c,d) if,and only if, a + d = b + c , is an

equivalence relation on H x H

31. (H,+), is an ordered abelian semigroup, 11;:is a ppitive integer, add

na denotes thein-fold iterated sum. Prove that the relation - defined

by:

(a,b) (c,d) if, and only if, for all positive integers m and

n , Ma < nb if, and only if, me < nd ,

is an equivalence relation 611 H x H

ti
(The results of the next two exercises are important i4 the discussion

of measure functions. We give proofs in Chapter 2, after reviewing the pro

perties of the feel numbers.]
4

32. If f : R 'belongs 'to the affine group, prove that f ireserves

Atlas (in particuiar,equality) of differences: prove that if

xi , x2 , x3 , x4 e*R , and x3 # x4 , then f(x3) # f(x4) and

xl x2 f(x1) f(x2)

x3 - x4 f(x3) - f(x4)

Conversely, if f is an isotone transformation which preserves ratios

-of differences, prove-that f belongs to the affineA=up.

+
33 Prove that any positive similarity transformation on .R , is an auto-

morphism of the ordered semigroup (R ,+,<) . Convepeiy, if f is

any automorphism Of (11+,+,<). prove that f is a positive similarity

transformOtion.

34. (a) Prove tflat every similarity transformation on R preserves'ratio;,

and, conversely,, that every ratio-preserving transformation 4:15 a

similarity.

.(b) Similarly shoW that the ratio-preserving transformations of R+,

are the positive similaritieslt
1

.4

Let j..= 440't gdset'of poitivintegers, afid the set of positive

ration]. numbets. ,et 'H = (kx 4 ki k fied)s. Prove that

(H,+,<), is an ordered semigroup, and that if 'k > 1 this is a proper

sub - semigroup of (J +,, +,<) . What

replace J
+

by ,Q,: . or R+
T

A

,

the corresponding situation if,we
e

i ,- ,

. N .
0
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'36. Prove that the set of monotone increasing functions on R is a non-
....abelian semigroup (under composition) with a two-sided identity, and

with left-cancellatfon.*

1-7 .A Classification of Measure Functions tio4

In a subject as.large as mathematics there is a opntinUous eqort to

find ways'oP giving conceptual order to the growing diversity of ideas and

theories. One method which has proved fruitful and which was formally

presented (in relation to the classification of geometries) by FrelixTlein

in a famous address (the Erlanger program) given in 1872, is to study the

relationship between certain sets with mathematical structures (e.g,, opera-

tions, relations) and

essential features of

be concerned- with the

certain sets of transformations which leaveinvariant the

these structures. Thus in euclidean geometry, we might

study of those properties of subsets of euclidean spaces

which are unaffected by rigid motions (congruences), or by similarity trans-

formations;" in projective geometry the concern might be witkrthe invariants of
*projective transformations; in affine geometry, with affine transformations;

in topology, with topological transformations (homeomorphisms); in group theory,

with isomorphisms; and so on. This is the spirlt in which the present-section

is Written. But before going into detail, it must he emphasized that we are

not going to descrIbe a nice tidihnished theolOwith a complete class

tion'of all possible measure functions.. There are many loose ends, anoti,:t is,

not cleat that these could all be tidied up.' Nevertheless we believe that you.

will find this partial classification of considerable value and interest..

We are all familiar with the fact that, in our everyday experience, we--...-.......... rr -- -_
\,..._-----eicc(tult\er...a--varkety'of.th functions. In,the next chapter we discuss the

construction and propertis of these functions in same detail, but for the
1

purpose of this section we assume that you art familiar with the gen4ral pro-
--

perties andrelationships Of these, and other common measure functions., Par\

length functions We assume that there is,a domain D- of objeCis (a term you',
t .,.

\. ,

should inteilpret very broadly) whi9h possess,the attribute of "length",, and v

that there i,;.-a length-in-feet function, %f , from D to the real:numbers- ,/,'

R . We alsoke a length-in-inches function, ).1. ; a length-in-Miles func=-.
4? --1

tion, % ;. *length-in-centimetersfunction, X
c
; and so on. All 'of thesem 1 40.-0-

I J
functions V the same domain D ,, and the same value-space R ,..and they

. ,
,

s
,

.

all purport to meaSure.the same attribUte, length. It is reasonable to ask,

whether there are any relationshipsAetween them. Of course the answereis: ,,
.

, I

.

f , ,'

11 2

41A-1-
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"y ee:forexample,thevalueofx.on any element 44e D is 12 times

the value of
f

on d_.; the value of
f

on each element of D is 5280

times the corresponding value of )%. ; and so on. In terms of,the notation

developed earlier, = 12 Xf ; = 5TJ15 ; etc. We.banindicate these
f

relations in the following commutative diagram: (Where Ein au:tomorphism and

its inverse are-indicated by a double-headed arrow3 the apprOpriate name is

placed near-the head of the arrow).

*

Any one of these length functions is-similar to any other: i.e., any.
.

one can be obtained from any other by composition with an appropriate posi-
s : .. .

tive*similarity of R ; and, more generally, any function obtained by com-

position
-it

position of a length fUnction with a positive, similarity As also a perfectly
. , ..

suitable length function. Wt can summarlzethis.sitnatiOn by asserting that

the essen'tialproperti6s of a length_functionpreOmhanged by composition
, 1

,

"" with any element of tne popitiye siMilarity,group ,S'I- -We anticipate the

next chapter by saying that the basic properties of a length function, on a

set D of real objects, 4e that iti should assume,only'Tiositivevalues, and

that it should preserve an empirichlly determiled "ilength'structuren of p.

This empirically deteriine strueturle will include an equivalence relation
,,. ,..

on D ; (a lehgth-function,must assign equal values Ito length-equivalent %
,.. ,

---....._*-- objects); ah reer.relatiolli on the set D of equ iValence classes; tind an
. ---.

-) - , .

muiyalence relation on, DUX D , which determines equivalence of "ratios ".
_,,. --", p . -

.0fs we wil see, the group k transformations'of R which (by compositiOn)
/,

one length-full:af 'pto another, is precise* the positive ,

laxity group i. intr d Red in'the last section. Each element of S I.
., to

., l

43

. 48 -Tr
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'determines a transformation (actually, a 1-1 correspondence) of the set A of-

all length functions onto itself. This is sometimes expressed by saying that
+
S acts as a group of operators on A . Actuslly A .has the structure of

_

an ordered semigroup under addition, and these operators determine automorphisms

of A as an ordered semigroup. In this sense, the ordered semigroup A of

length functions is-"invariant", ander the positive similarity group of trans-,

formations.
. 4

As the lengths of all real objects are positive, we could consider S
+

+ .

as a group of transformations on R S is the largest group of such trans-

formations which (by composition) leaves A invariant. ChoOsing a unit or a

"scale" for length corresponds to selecting a particular function of A . As

we shall see later, if d is any object in the domain D., and p any posi-

tive real number, then (with suitable assumptions) there is exactly one length

function X c A such that X(d) =(1) . Moreover, ;for fixed d, the set of all 0.

such functions is the set of all length functions. Thus the set ,4 has \- s

elements as-there are positive real numbers.

The situation which we have despribed4for length functions is common to
many of the so-called "scalar measures" of the phYsfeal sciences (e.g., mass,

area, volume, work,,density, time intervals). The fact that a "scale" for

measuring each of these is only unique up to a similaritootransformation, is

well known; it plays an important role iii the method of "dimensional analysis".

Measure iunctions of the type which we have considered aboye, might well
;*.c rbe referred to as similarity- invariant measures. ,Another name sometimes sed

for-them is ratio scale, a name which' is related to the fact that, the reser-
vation of ratios is the distinguishing featugkof a similarity transf nation. .

f

(See Exercise 1-6.34.)'
.4

. ,

Some 'of the measure functions used in the physical Sciences, and ma

those used in the social sciences, are determined only up' to a transformation

by compOsitiOn with a larger group than the group of positive similarities:,

'or eXamile, in the measurementof temperature (not absollte temperature) you
11 ',aloe Undalbted

y faMaliar with, the transformations between the Centigrade,
i

functionl'T and tie fahrenheit function T if d belongs to the domain
, . c ,.

, - f :
:

. ,
of these fUnctions Ohese trarisformationsare

A

. 'Tf,(d) 7,Te(d).= (Tf( ) 32)

/ -
1

!c(d) iiif(d) T.(d ) + 32 .

and

4 9,, "



.11k

- That is, and T
c

and its inverse
-111."

s

differ by compositibn with Safe* positive

160
`x

5
x -

5
- (x - 32)

9 9 9

x*--)
5

x 4. 32 .

1 -7

affine functions

The important feature of these transformations (as far as temperature
, fir

is concerned i4, that they preserve equal diffei4ences. A little thought

should convince you that any positive affine transformation on Tc Cor Tf)

will yield a suitable. ature function, and that the.edsential features

of temperature functions pre unaffected by composition,witha positive affine

transformation. In fast, there is no reason why we cbuld not

roles of hotter,andocolder, and Construct a temperature scale
j

which the values for hotter objects were smaller real number

reverse the

(function) on

this corres-

ponds to permitting the variation of temperaturt functions.by composition with
orb

any element of the full affine group,.

A quite similar situation hods with respect to the measurement of

position on a line. The measurement of position on a line, by an appropriate

. assignment of,real numbers to points of the line) is the process of giving the

line a coordinate system. "coordinate functicirr" on the line is a measure

of location. It is well known that if any coordinate function is composed-

with any'rion-singulaiaffine transformation of '11', then another coorainate
0

.

function is obtained. (km will fXrid mare detail ca this 4.4 atiprOnthe SMSG4-
t",

books "Geometry"; "Geometi7 wlth Coordinates", "Analytic' eokeiry,-
.

d

"Geometry Based on Ruler,and-ProtractorAxiems".) Other measure fuhetions
.

,
whosa,prbperties are affine-invariant are the measure_ofq/ocation iorlfime4a.g., "

calendar time), and potential energy. . - (,

A

311,

e

r.

6.4

4.

When one looks beyond the physical sciences,' one finds examples of

measurement situations in which *the image space is RI-but the domain of 4e 4

the appropriate measure function has lesa.strudtire will'respect to' the

ertitribute being measured than in the cases of such attrlbutes as length and
):

,.
f i

0ift,,tmperature.. This is reflected in the fact that d lager ,group of trpnsfor/
As,!,

m-aitions of R leaves intact the essentia/4atvs oP the relevant Measure,'
.

functions. Most measurement procedures for ranking sets of objects in,a

transitive order, permit composition with eleients

isotonic) group, or *p,,with elements of the corre

st#ongly thonadne functiona, An example is the rank

of the isotonic (oi positive

sponding semigroups Of

ing of a class of students

ht range from,Aily, 0 to
So

by means of the scores on 4 test; These scores mig

45

o

'



1-7

200', but we would not generally infdr that a student with a score of 80 was
twice as gOod as one with a score of ido ; or that the .difference in ability

between students with scores of 18.0 and 190 .was'the same as the ability

difference of students with scores of 30. and 40 . The scores merely yield

an order relation on the domain, and composition with any strongly monotonic

.-ta'ansformaticp of R does not disturb this feature. Of course, in practice,

we often use (generally implicitly) a monotonic increasing transforthation which

transforms the raw score fRnction into a function whose range is a segment

(1,2,3,...,0 of-the poiitive integers, and we regard this function as a sort ,

of "canonical function" for the measurement of this.particaar attribute.

Other examples of measure functions of this type are: hardness measurement

for minerals; grading measures for the quality of materials; location of houses

on a street, by numbers (where east and wept, or north and south, are introduced,

these can, e regarded as positive and negatlye, in either order); many kinds of

preference measurement in psychology; and soon. An early stage in `the

develoPment of such measures as loudne lit temperature (where we might o

have,the means for deciding ,for each pa of objects an order; such as "warmer

than"','whibh'yields mi:eipirically transitive relation) would put them into

this category. The simplest form ofthe notion of utility (in economietheCrY)

mighbe considered-to belong to the isotonic-invariant category of measure

(func ions; a more advanced viewpoint.ofthis notion', which would put the

. measurement of individual utilities into the category of affine-invariant

measure functions, is contained in ChaPtei.' 1 of the modern classic, Theory

of Games-and Economic Behavior, by J. Von Neumann and 0. Morgenstern E8] .

0_

0
In-this chapter one finds a ihoi.oUgh discussion of the sort of empirical

"structure" On'the domain of the utility-measure function, which would enable

it to be considered as affine-invariant.

the same'chapter, there is brief mention

that real-valued meikire functions might

(often groups) of transformations on JR

It is interesting to note that, in

of the basic of this section:

be clasified in terms *f the sets

which lead to.equivalent functions. .*

This idea, -.which seems to have occurred independently to the psychologist.
.S. S. Stevens,,i also discussed (in more detail) in Cl]. and ,(9).` Stevens

uses he intervalterm scale to describe a type of measure function which tb
term

, .

affine": nOiant, becase affine transformation; (and hence, of course,

'".e;

a

,simalariti,es) on R preserve equality of intervals (see Exercise 14.32),

but strongly monotonic functions generally do not;
,

scale to describe a type of.a.easure NO to Which

ratio scale to deicribe type of meas Mon
-7---/.-

"in''.`- Hi also introduces the term nealar, to
-' --- 1 ,-,-

ter.. '+ -'r^'

V
....- k* .

5
,46

'he uses the term ordinal

is isotonerinvariant, and

which is pimilarity-invari7,

describe those real-valued,
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measure functions whose essential Character is unchanged by the permutation

group PR . In his case the only strlIcture on the domain is an equivalence

relation (which might be trivial), and the only requirement is that the measure
.

function assign the same value to equivalent elements of the domain. In other

words, the measure functio n simply uses numbers '6o name, or identify, e

valence classes. Examples of this iype o measure are the identification of
-t----r .

team members by numbers, the assignmqnt of telepb2g numbers to indiViduals _
,

(not generally
_
1-1: aslirule members of the same family have the same numbe)

and the assignment of social security numbers. (In the\last example, if the

assignment of a social Security number were required to indicate order of
; ..

,
. 1

entry to the scheme as well as ,to provide identification, then the measure

would be ordinal rather than nominal.) In some countries, as many bewildered

tourists have discovered, there are towns where house numberslin a street are

assigned serially in the order of cpnstruction! Such-an assignment is nominal,

as far as the measurement of locatibn is concerned,;] tit when regarded

as a measure of the time of construction, or of.age. As an age measure, this

would not be an interval scale, becaude'it would not be
-

generally true that

pairs of-houses with the same difference in their, assigned numbers would have
-

'' the same difference in their ages. .

'-.>

. , .

`feu will have noticed that the classification is rather "forced" or
.,,,, vi. ,-..... -
----`-41Veriginplified, in several places. For example, although there would be

.11r-1,.1*itlqng wrong, in' prix in arbitrary real numbers, such as Tr ,

. .
,

.17f4ox; ',,VeM negativejna0ers, to indicate social security numbers, in
- --..:.

K.4. ,---J ,<' 3 ,,

prkeice we prefer t4:'stic1Ctili positive integers% Thus. the "invariance set"
v -,.. .

. , ...' ..,

might, in p9cticej, be restricted to thc,set of permutations of ti.he positive

in egers. 6441a.rremarksappiy10 the numerical measurement of house posi-,

tiOn,:onla s'Oiet,f'Whea Lweo.9tsuall-Sr useintegers. But these minor exceptibns
-,A,

,. ,,,,.. I.

$16 not detract fl'oist:4he value of this transformation - set /invariance idea in
.c..2(

givii lig a general CiAg'iadation of rear-valued.measure functions. Moreover,
,..- , 1

the "aea can be extended beyond those measure functions whose values are

real 'numbers.

4

,

A
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Theirollowing table summarizes some-of the above ideas:

Type of PunCtion

CLASSIFICATION.OF MEASURE FUNCTIONS

Zmpiricll_Structure. Invariance Examples -
in Domain Group

,Permutation-invari4ont Equivalence
or relation

Nominal

Isotone-invariant
or-

Ordinal

Affine-invariant
or

-Interval

-R

Above, and also I, or
an order relation +I

All of above, and A .or_
also-an"equal- ......

interval" reratiOn -
. on ordered pairs

SimAarity-invarlant. All of aboVe; and
or also an "equal-

Ratio ration -relation on
ordered pairs

S or
+

Social security numbers; .

identifiCation numbers
assigned to members 9f
a team.

Street numbAring; hard-
ness of minerals; rank-
ing of students.

Location gf-position
in spacA;or time
temperature (not
absolute); utility.

,Length, absolute -
temperature, mass;
density, work, area,
volume,..elapsed time,
numerosity.

We make several comments onthis table:

1. RougAly speaking, the domain of each type of measure function has a

structure which, includes that of-the types listed above it in the table;

i.e., we have an increasing complexity of domain structure (with respect

to t e particular attribute under consideration) as we read down the table.

2. The in riince groups becoMe "smaller" as we readedown the table.

(Roughly speaking, each is a subgroup of the
4,

one aboVe.) This is a

.
.

.

natural consequence of the fact that there is more structure to be -
1

°....

p2werved.' i
. -52 .11

. 't

.11 .
3. We o'ten wish to putAdditiohal restrictionA,9n various meature functions.

I

Ttese include such restrictions-as: positive values only; integer values

only; rational values only; values on a certain , segment of the integers,.

o6ay;', and so on., These'restEictions can be rep1ected in corresponding y
-r 4rdstrictians o the admitsible transformations, and the,resulting measure.

' funcO.ons can be further classified WC-Cbrding t9 the appropriate sub-groups
I.

-;,-

or semigroups which result?. ,(FOr.exaMple, in using numbers to identity a
! . 110

finite' set of ob4ectsje.g., embers of a teem), wevoften use the segment,
.

,

' :

53
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of the'integers from J. to n , fOr suitable n The appropriate trans-
,

formatien group P
n can be considered as thd subgroup of those elements-

of P,
-n

which are otherwise constant.) Proceeding in this way we observe
o.

that the categories of_real-yalued measure functions (classified by the

appropriate groups of transformations) form aIpartialljr ordered set under

the relation of "subgr'oup", and not a'totally orderedlset, as you might

conclude from the over-simplified table.

4. You will have noticed that Ffe have included the measurement of numerosity/)

as a similarity - invariant measure. Of course the simpleSt measure of,!

numerosity is the" ordinary cardinal number measure. In a certain sense

this-has a "natural" unit, and there are no "different but equivalent"

measures. In this case the set of,hose transformations of R which

yield (by composition) equivalent measure functiorfsis the single-element

group consisting of the identity element only. Thus cardinal number
. ,

Mbasure colard be put in a class by itself, and referred to as "identity-

invariant". ePrsptice we do accept other measure functions for

numerosity-measurement: in dozens, by the score, by thousands, and so on:
. -

These differ from the cardinal number measure by positive similarity

transformations, so it is appropriate to include numerosity measures in

the similarity-invariant category. If we wished to restrict'such measures

to those whicli correspond to integer "units", then the appropriate subset

,ct iwould-be the semigroup of similarity transformations . 1
- , where,
Tf-

n is restricted to positive integral values. . ...°i I

00:'

One final comment:' As you are undoubtedly aware, measurement is -fiot.
-....

generally an end in itself: For example, in many.situationstWlitmaher.

resulting from measurements are subjected to statistical,analyses, leading to
,' : ,

the calcuiatiOn of such statistics as means. modes, standard deviations, and

4 on. The question of what statisticsi_ procedures are appropriate 4orjhat\
typesot measurements is strong1 related o the classification of measure.

ifunt.Ons, by invariance-groups. ''You can finethis question rested in thq
''.

:,
lrticles of Stevens [Wand, [9]. It

articles have s;Cimulabed a,considerable

ofabout
the meaning to be given

of the relationship of measure ?Unction

ttatispZad. procedures. <

1 .

should be pointed ou that these
K.

amount of current controversy, large1y

to "appropOiate"'in the consideration
1

classification, and "appropriate"

*,
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Chapter 2

THEMEASUREMENT'OF NUMER0aITY AND LENGTH

ir4

o
.

2-1 Introduction,

In Chapter 1 we tried to- convince you that a functional viewpoint of

measurement was both, natural and useful. In this chapter ve.takea.much more
f

detailed, look at some simple measure functions, especially,qhosefor the

measurement of numerosity and length.- These are "simple" in a sense that will

beciomeclearer_yhen we discuss "non-simple", or derived measures,.such as area,

volume, and velocity. (We shall see that simple and derived are relative, and

not absolute terms.) They EiN*also simple in the sense iktat they represent

the outcome of some of man's earliest attempts to come to grips with the idea

of measurement. .

The history of the development of measurement ideas parallels the history
0. --

of the development of number ideas, and_the inter-relationship Of the two is

a fascinating study: It is hardly aggeration to say that the familiar

arithmetic operations of addition and multiplication (for the positive whole

numbers and the positive rational numbers) were "invented" in order to satisfy

the needs of measurement, especially numerosity measurement, length measurement,

4 and area measurement. But our concern is not sdrimich with the history of the

subject-of measurement, as it is to give you a conceptual viedeoint.which is

appropriate to our current level of mathematical development, and which exploits ,

the precision of mathematical ideas to make clear what is- involved in the

setting up of measure, functions, and in such related ideas as units and

. dimensions.
.0

, Roughly spqaking, our viewpoint is,-that We Itnal all about the realThumber

system and_its various important Sub-systems (natural numbers, integers,

rationale, etc.) and their inter- felationships, and that we are interested in

describing certain functions,-whose domains are 'sets of real or mathematical

objects, and which will, in a 'sense to be made clear, preserve an empirically

suggested or mathematically determined structure 9f yelations.and ,operations. r.

InviewOf our earlier remarks concerningthe' way'in which our ideas about

numbers have been influenced by.our ideas about measurement, it is necessary

to, recall that ye now knot that the 'real number sYstem-caWe logically
o

developed from certain axiomatic assumptions, without the use (except as,
motivation) of any of the results of measurement processes. his is important,r.

r e

51 .
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because it Would not make much sense to use number properties which - defended

Wmeasurement, in ap.atteMpt to explain a theory of measurement.

Many of you willbe.famillar with .an axiomatic development ofthe real

ber pystem from some appropriate set of axioms., (See, for example, [6],"

(10 ) If you'Pave worked through such a development, you will have learned

a grea deal not only about the reels, but also about the integers and th

rational bers, and the way in which these various systems are inter-related.

As we shall ed some of these ideas in fairly precise form, we devote the

next Section to 'brief review of the real number rstem, with particular

emphasis, -on thoseideas needed later on. You will fixg.these ideas treat.
p, 4fmuch more4systematica with most of the necessary proofs, in fol and [10].

2-2 -line Real ,Number System

)

system by defining it to, be.a complete ordered'field, and then e;plaining'
.....% ,

_1'4 at these terms mean. Unfortunately stih a postulational approach tens us
s

noth'ngabout,the natural numbers,, the integers, and the rational numbers, or..,

how t ese-, e; ,related to one anlper and to "the real numbers. If we need to
.

. -- - ..

knOw about (as we'do Tor the purposes of this book), -we must ;

k laCkwards".from the postulated al numher.system in order to obtain"fork

itherri. In many ways it, $ simpler,,an more instrhtidt to start;ith a much
..:' .

More primitive n Tbestem, the natural numbers, how its properties
1 ...4 -,l,' '

can-be de'veloped,f om,a'iLimple axiomatic description. Thh we can defind

successively the integers,\Ithe rationals and the reels, %.Jithout the nieed'eto

introduce any new undefieVerms, or any additional axioms. This program is
N,

ddrried.,through in 16] and (10], and in many of the similar Looks now

available. It occupies. far too much space to be included here: all we can do
0 .

is.indicate some of- thefltore-impOrtant steps in the development:o 17
./-

.., 1 " \
4 a f A . ...r., j

lr .
The Natural. Numbers.. ASa starting point (in addition to fundamental

.A....

ideas from logic and set theory) we'take the so-called Peano axioms'for the ,.3:.

natural numbers. Several different sets.of axioms (variations orthe set :j I

..,.3agiven by the Ii.alianmathemay.cionG. Peano in 1889) go by this name. A
,

.4.
.suitable. set is: ...

,

t ,
( 1) 'The re exists a set N of objects which we call natural numbers.

,s

:1,-s --i-.,
("Natural number" is an undefined ter.
,

'tr.'''.I .

We mig4latteept to explairi to you tht structure ofthire,a1 number

f
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1) Theke exists a functio9 '9 N -4 N with the properties'

(a) p is 1-1;
(b every element of N with'one exception, occurs as an

ge under . (We designate -this exceptional element
by e symbol "1"

(Axiom of In uction4 If -M is a subset of N , such that

(b) 9(n) c M when ver n c M ;
then M = N 's

If 9, is interpreted as the

4

2-2

ction corresponding to the intuitive idea
"addition of 1" , these are well known propeilliks .of the set of positive,*

'integers. Wilat 0 not so obvious, unless you hal,T gcing, through, is that
Ithese fevroperiies, taken as axioms, enable us to develop logically a system

Which has all, of the properties which we have learned to associate with the *.
.:, g

positive whole numbers. In this book, whenever we.refer to the nettural nalbers,. .

'or. thepo.sitive integers, it is this formally-developed system which we have.
in-mind. _ .

yr
.

. . .
The basib properties developed for the natural numbers are. .

i'' . \ ,;/ \
_ .

(1) There exists a binary opelkation on If , called addition .(1-)

which is associative a'h commutative, and which has thetpropertieg
...

,... . -
0. ,, fc) eagh m''c 'N ; ,. , . /

(b) m + :i(n). =_ 9(m + .n) ,, for each, :A ,I n, e',.11 _. _ ,
I ° t

(ii) There exis ts a binary operation on N , called multiplication,
<aenotpdby' -3 or by juxtaposition) which' is associative and

`w
commutative, and which distribu'tes over addition; and which has
the properties

--7 CEO. m 1 -i- ni Int each" -11 e' N' ; ( .--tl
(b) m 4n)% = in ,n 4-,m 'for each `mi' , n P' N .

... ° .11. .

(iii) There exists an °Ape relation R(<) on N ,, defined `by :. m'< n,..o
. ..

AV I .if and only. A iiif therec exists r such that + r /n . 1

-:' .,

This relation is connected with the operations of
f addition and

i
multiplies-61°n in such sysy, that the sets (1\f,+,<)" is an ordered .

r

semieoup, sed the set (N,,<) is an ordered semigroup with
ideptity.t -- I' d. , for m ,--n , p c 'NI ; ..-

, . .
. ,*

.
(a) m.< n ,.,n <p in < y (transitivity) ;

1/
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t

C

'.,

f' (b) ,exactly one of the.StateMents m..= p , m < n , n < m ip

'.true (trichotomy); .
)

(c) m < n if and only if m 4.: p < n + tt ;

. ,

s.

. (d) m <:n if and only if m.p < n *pi i.
F--

(iv) If an initial segment, Im ,of the natural numbers, is defined !

to be the set dr those natural numbers less than or -equal to m ,

then
96° .

1

1

4.4

for m / n , there is no 1-1 mapping of Im .onto I
n

;

if A pnd B are disjoint sets, and there_exist 1-1

correspondences- '

"A Im, B I
n '

then:there exist 1-1 correspondences

and

AUB

EA. A x B .

m..n
. ,

-..

..

These are, of course, only a few of the properties of the natUral lcuMbers.
. !

As you are no.doubt aware, there is a wholp branch of mathematics, called

number theory, which is jai concerned with the natural numbers.
. t 15 \ .

t ,. ,

-

) The Integers From the "luta numbers' we can' proceed (without additional
...

-:
.,.. --,..t -

.
._

,

assumption) in either of two diretions: we pan, either define the integers, or
,

, .a......-.........!..../.. '..."!;'1,4..e. .4"-' ' ' 1. ? - ,..... ..... -711;,-....

we-can dell the positive' rational numbers. In elementary work', in order to 4'"--.

obtain IhaAfitegers we usually postulate zero and the negatives, but we con-
..

,

struct the positive rationals as equivalence classes of ordered pairs
.

(frac-
.

tions) of natural numbers, under the. equivalence relation. ,

. ,i 411,

. IS - 2. if -thi-d-olarif mq ii-np- *--
n q

4

/ Actually this procedure for cons acting the positiye rationals has its...exact
.

.

counterpart'in a cemstiiiAion for the integersj,yhickmay be defined as equlVa-
% .,

l exice. cltaPes of ordered pairs (m,n) of natural numbers (we can think of -/
...

-'-' these pairs as "formal differences") under the equivitlence relation .

'''' -4
,

' =-", ., "4 4 t .
(m,n)

.. (p,q)---if and only if m + q = n,..i. p ..
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i

' The operations of addition and multiplication? and an order relation, can

be introduced int8-this get of equivalence classes in a natural way, )and we
.

.

find that this new system, 2.). , has all of the properties which we 4tiormally

associate with the integers, and that J contains, a subset, J+ , which is

isomorphic to the natural umbers under the correspondence .

1

. e.

wItere.the lefts side denotes the equivalence class of (n + 1,1),., In this

sepse we may regard J as an "extension" of the natural number system. The
. t)

. main difference between J, and N is that J contains the negatives )( addi-

-tive inverses) of the elements which correspond to elements of N, and zero,
.. - .

and that J is a commutative group under addition.

/
_ .....

,

.,

. ,

The Rational Numbers. These may be constructed as equivalence classts of

o dered pairg of integers (written as 2 , ii A 0) under the relation
.

q

.

1.2- E if and 'only if pS qr .

,

.q s

Opera-446hp of addition and multiplication, and an order
4 V

duced ala.\a,rtaturig',way, to yield a system Q , which we

numbers. This system tas similar structural properties

2

relation, are intro-

call the rational

to J , and in addi-

tion the elements of, Q , with zero omitted, form a commutative group under

multiplication. Q is an example of ap_ordared field. .Q. contains a subsetis.
i .zf

whieh'is isOmirphie to J\),,,Undertin correspondence , 1

.. ..!..,, ... .,4, . ,,:...:;,, , ._ .. ,, - -1_ .:;. ...-,,,J . . ,.....3 . ..t :0,, ,...., , ..,-, A .
0 .

heleft spe denotes the eq uivalence class of

2.*:""tn'this sense We-may regard Q as an extension-of J .

oNer relation in Q '--h\"Trasrey. 'important -propries,:,

were p is an integer, and

ir

4(i) It is dense in the sense that, given any a 'and b e Q with

- a < b , there exists at least one (and hence infinitely 'many)

c such that a < c < b . (Observe that `this'is iibIrt--a property
of the order relations the integers.)

z(ii)" It is archimedean2 in the.sehse that given any positive rational

4*,, numbers a b ,Ithere exists,at least.-one (arid hei*e,infinitely

many) pOiitive integer., m 5tch that ma > (The relation.

isi of course, defined.iii the normal way: a 7 b if and only

if b < a .)

A :I
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The Real Numbers. In spite of the denseness of the ordering of 'Q,,

there are m4py ways in whICh Q is "incomplete". For example, it is,well-
.

* .

--known -(end easily proVied) that'there is no rational number q with the pro -

ti perty that q
2

= 2 , and that this lack is highly significant in relatign to

,questions of segment-length in geometry. Q is also incomplete in other ways

which relate to its so-called topological (or continuity) structure. Both of
. .

these deficiencies can be overcome at the same time, by using the rationals to

construct a new number system, the real numbers. This can be done in a variety

of ways .(-a,g..,' Dedekind cuts,Rauthy sequences, infinite decimal or binary

which lead to isomorphic stems. For our purposes, the (Dedekind)expansions)

cut procedure is the most useful, a f;it which is not surprising if we remember
that Dedekindts idea was directly, derived from the'method invented by Etdoxus

(about 370 B.C..) for the development of a satisfactory theory of proportion:
. 1

ality for segments. Eudoxust procedure May be considered to be a substitute.

for the fact1that no suitable system of numbers (i.e., the real numbers) was

then available for the measurement of length. As we shall havetto imitate

this procedure in our discussion of the'measurement of length; you will be
N.'

able to judge for yourself the greatness of Nildoxus* achievemerit.

Because of the importance of the idea of a (Dedekind) cut in connection."

with questions of measurement, we shall describe the idea briefly, and indicate

hbw it leads.to a new system of numbers. For the sake of simplicity,;let us

confine our attention to'the development of the positive real.nuMbers,from_the

positiye,ratiOnalinmiberS.We designate. the set of .positive.i'.ational
j

this set is an ordered semigrouR undtr addition, and an ordered group.under

mult.

iplication.) k N . k '

We have already observed that there is no rational number whose square is
....

'
.

2.
It

.

.is easy to prove that there are positive rational numbers whose squares

are.less than 2 (e.g., 1) and that there are positive rationals whose squares

are greater than 2 (e:g.,Z ; that positive rational ,belongs, to eAKFTT. 1

. ,

one of these categories; that every pOsitive rational in the fIrst"Categ is
.--

less than every poditive rational in the second; that:the first category con-

tains no greatest positive rational, and the, Second category contains,no least

positive rational; and that if any positiyeratiOnal. belongs tot the firs

(second) category, then every smalleti (greater) positive rational also longs
,

to-that category. .-
.

'',.

e )
,.,

56



Oa

Ar
sa.

These properties of the above partitiori of he pdsit cve etionals ere hot
\

all independent: some are consequences of the others. 'Af er 1,4 have con-
,

structed the real numbers, we shall find that such2,2!5ition iS`-oharpcteris-
....

tic of a positive irrational number. (I.e., The sets _of positive rationals

respectively less and greater than,a specified positive irratInal constitute
f.,

such a partition.) What Dedekind, did was, in effect, to reverse this ideato--

obtain the positive irrationals. th addition, in order that the new system of

numbers should contain a subset isomorphic to.thepos.itive rationals,he intro:

duced a minor modification byTermitting the second category to 'contain a
4.

least Lositive rational: (Each positive rational p detepines a partition,

of the positive rationals into the set of thoie positive ratIonals.< p , andl-i"x

the complementary get of those poSiliwe rationals >43, .) We\could now develop

the positive reels by defining "ordered partitions" a 'certain ordered pairs

of sets of rationals, and introducing operations and r4lations into the set

of Buse of the complementary chivacter of the pair of sets,

in an order'dd partition it is sufficient (and si 1x tb manage) if we con-

centrete our attention on the "low .Set in a pas ition. This we call a cut.

More precisely, a cut, C , is a set of ve°' 4tional numbers, such that

,/
(i) C # 95 (the empty set), and C

'(li r C and q< r, then q

(iii) if rl c C , then there exists 43 c C ith p "> r .

We denote. tliellsetj of all Sur _by

*N.

- of addition and multiplication, andA

a
r-aas

R. and proceed to define operations

order relati n, in.cR
+

as folloWa:

+ r
2

6: r
1

c C
1 '

r
2

c

= Ci , r2 E C23,
4 k-

C
1
<

2
if and only if thereleXIAs rc,,02. such

4
A

4 '.. f f

that '-r i C . Sr' ia 7

. sl., -
-7 _ ,,""1.4. 41.--. Pa?',. a x' "--1 7 T 7-ri-T,

t4P"P
s".i

If you think 2411eSe eu s as- candidates fot the A:r1 ositive real. "
1' *

numbd
VAs,

dnd k in-mind that R
+

should contain ,al, of rational cuts
, -

(corresponding:, he rational partitions) whic isomorphic to Q
+

, then

.-
you will see that these definitions_ are the natura

-Without too much difficulty, itica be Shown
,
that the defth ppciration's

are associative and commutativi, that our pIcation distributes over addl-
t- -

,,

tion, and that order is preserved under eakoperation in the sense that, for

cuts- C1 , C2 , C
3

,'
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( i) C < C if and only if Cl
1 2 3 gaal- 3 \

(ii) C1 < C2 if and only if Ci C3 <.C2 C3

We can also slim/ that R+ has a multiplicative identity element (the
,

rational cut determined by 1).0, and that each cut has a multiplicatiw inverse.

(I.e., R, is an ordered-abelian group under nultiplication and an ordered

abelian semigroup under addition.)

We can now introduce a zero tnd negatives (additive inverses), by a

procedure which is entirely analogous to the construction of the integers

from the natural numbers, to yield the system R of real numbers. Addition,

multiptation, and'an order relation are defined in a natural way. R. is

an abelian group under addition; and, with the zero element omitted, it is an
,

abelian group under multiplication. The distributive property 'holds, so that
R is a field. It has an order relation, which is preserved under addition

, and under multiplication by positive real numbers (i.e., thosb real numbers

greater than the additive identity element) making R an ordered field. The

ordering in R is dense and

perties were also properties
.

which is isomorphic to ,R+

extension of, R
+

. Moreover

archimedean. (Obvrte that all of ttlese pro-

of the rational Limbers.) R contains a 'subset

and in this sense R may be considered as an
N

R _contains 'a subst isomorphic to Q , and

hence R, may be considered,es an extension of 12)
. -

'A simple; but,imiortant, iroperty of R , is

real `number, C-=-"Jk 3 k e Q4 k < r) then
corresponds to the cut C .

if r is any positive
40P

is the real, numbit'

, .. _.

f,-'
' It is hardly' surprising, because of the.method of construction of R+ ,

that R+ contains a number (cut) whose square is the cut "2" . (I.e., the
2,-

cut determined by thef, rational number '2) A you can easily verify that if

,----)zr, - ---/-:.-- --,--, & = (r : --r- e Q ---; r <-2T- , ' 777- -1---1 ' j----7

then C2
,

= 2 . What is perhaps more surprising, is that R has all oPthe

properties which,are implied by the (topological) notion of completeness, We

do not need to dip'cuss this idea in detail, so we merely remind you that the

idea of completeness is contained_ in each of the following properties of R ,

all of which can be, proved frol the definition of R which we have given:
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1 -
, ,

, (i) Every cauchy,sequence in R converges. (A Cauchy, sequence (a
n

)

off reaI numbers is one which has the property that
' -, , , , : L!

rgal > 0 , there exists a positive integer nt such that for

all positive integers p , q , > nt la - a (
< :

4' .)

I

P q

ii) ery (non-empty) set of real numbers which is bodnded from above-
2

,

has a Supremum, or leasst upper sound (denoted by 1.u.b.1 or sup).;

every non -empty set bounded from below has an infimum, or greatest

r

gt,2 -2

lower bound (denoted by g.]..b., or inf).
.

10,(iii) If R . Riu R2 is'a partition of the real numbers (i.e., Ri / 0 ,
!

R
2

/ 0 , and R1(1112 = 0) Such that every number in R1 is'less

than every number in R2 '; then either R1 contains a greatest"

real nuMber,-O-r, 'F(2 contains a least real number.

OP.

If (an) and' bn) are non-decreasing dnd non-increasing

'sequences of real numbers, with an bn for every' n , then the

intertection of all closed " intervals" [an,bn]-([an,bn]

(x x e R ,an x bn)) is not empty. [This property can be

thought of as a "geometric" expression of the notion of cbmplete-

ness. You can prove it by shoWing thee-the set A of those real

numbers which are less than at least one a
n

is 'ion -empty and

%bounded above, and then proving that the least upper bound, a ,

'of this set belongs to every [an,b....] . ..To see that this property

_

.does not-hold.for the rational nuMbers,,,,cnnsl,c10-trIPITAsing and

decreasing sequences (an) , (bn) , of rational numbers, each of "4
ft

which'cdonverges to and prove that the intersection o the

rational "intervals" [a
n
,b

n
] ((a

n
,b n ] -= (q q c Q, an

n
b- ))

ts...empty_. (If you are not familiar with the notion of sequential

77 ,-,77copyprgenfe you can find it treatadjn,fin.V004-calculus.text.)]

Stmie additional properties of..R , which can be prolied'quite easily, and

which are useful in relation to the theory of measurement, are: Aro,

('a) Both ithe rational numbers and the irrational numbers are dense
.

subsets of R .112 the topological sense; i.e., if r is any

rational (irrational) number, then, fbr every real t > 0 , there

'exists at least one (and hence infinitely many) irrational

f

t(rational) number x., such thSt Ir xl < t . '(This implies,

\i that every interval [a,b] of real nuMbers, with\,a < b , con-
,

tains both'rational and irrational ndilpers.),

a
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i
4(b) Let C be a cut. 'Then there are strictly monotone sequences

(q
n n

) , (qt) of rational numbers ((q,) increasing, (a) de =.
creasing) such that for every n , qn c "C ',.

n
qt, C , and

(c )

q q

If C is'a cut, and q e 0 , then there is a positive integer m
such that for all n > m , 4 +

1
c C .

n

(d) If C' is a- ci.V-,. and. n As a positive integer, then there is a
, .,

1q c C such that ,q + 1
f C , 'and such that q + is not the

',I,,'

n
,. . n

.. -
least rational which is not in C ._

Exercises- 2-2

,1. Prove the completeness properties, (i), (ii), (iii), and S.ir). above.

2, Prove the properties (a) -- (d) above.

3. If C1 C2., C3 are cuts, such that

(a) if q, e C1 ,,q2 se C2 , then q1 + q2 e c3 ,

(b) if q1 q2 C2 , q1 + q2 C3 ,

show that C3 C1 4- C2

: q = + q2 y ql 4 C1 , q2 C2 (4 :q C1l. + b
2
)).

4. Similar to 3 , but with multiplication
instead of addition.

"3.,

; I j_ _ , I -,- ) -

... \
i i : 1_ _IL,. __I __1_

The Use of "Ikekind Cuts. To illustrate the use of cuts, we 'first prove
...{a theorem w ich relates to the'

classification of measure functions ,as discussed
$in Section 1-7, and lWe prove Exercise 1.6..32 as a ,coroLlety. Thew-Way in which_

cuts_ enter_4-nte itheset p roofs -is -trplita-l-df -the -u-se-ok-relal,
n'iaaltie'r7iaiberties

----i

1in the theory of measurement.
' If you work throughethe details ybu will .see

how much simpler mat ers would be if,we were able to restrict our attention
r

to rational numbers nly:

'OP; dr.

Theorem 2 -2.1. TAY f

serves 'equality of differe

.differences;' (This result

sySte in'Section 2-6.)

P

is a strictly,

nces; then f

will be used

64 6o

monotone function which pre -

also reserves .ratios of

in the discussion of.coordinate

-6 a-
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4
Lemma 1. If x e R , f : R -413 is a function which preserves leqUality of

differences,;abd n is a positive integer, then
0-

f(nx) = n(f(x) - f(2)) f(0)

. and

f(nx1) f(nx2) n(f(xl) f(x2))".

Prof. '100W
0

nx (n - 1)x =.(n'- 1);- (n - 2)x =,;.. = x 0

Hence, because*rf preserves equality of differences,

f(nx) - f((n g 1)x) = f((n -0-1)x) - f(In - 2)x) = f(x) - f(0) ,

).

Hence, by addition,

and therefore

Hence

n(-f(x) - f(0)) = f(nx) - f(0)

f(nx) = n(f(x) = f(0)) f(0) .

f(nx1) - f(nx2) = n(f(x1) - f(0)):1- f(0) - [.n(f(x2 ) - i(0)) -14'f(0)]
44,*

= n(f(x1) - f(x2))

Lemma 2. If f : R 4R is a strictly monotone function which preserves

equality of difference, then if is monotone with,respeFt,to differences.
,

f either preseivee or reverses the ordering of differences, according

as f is monotone increasing ox-monotone decreasing.)

Proof. Let x x x xeR' and letx-x<x-x Assume alsO2 3-
,

-- , 3
that

?
x2'< x1 < x3 . (The treatment when the'firs Or both of these in-

equalities are reversed is entirely, similar.) Then there exists x
5

such that

,x X
5

< X3 , and--x/ - x2 = x5 .

Hence, because f preserves, eqtality of.differerfces,

f(5c1) f(x2) ='f(x5) = f(x4) .

.
r

:
le

-
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ro

If f is monotone increasing)

f(x4) < f(x5) < f(x3) ,

and hence :

f(xl) f(x2) = f(x5) f(x4) < f(x3) - f()(4)

and f erves the ordei.of differences. If f is monotone decreasing,

and

f(x3) < f(x5) < f (X4),,

f(xl. - f(x2Y = f(X5) - f(x4) > f(

Hen e, f -reverses the order of diffeences.

Proof,__ of Theorem 2-2.1. Let x1 , x2 , x3 , x 4

...

..) . -xl x2

- k
.

x3 .x4,_....

3) f(x4)

R ,

ore

, and let_

eir

If k is positive and rational, let k = - here m and n are positive
n

integers. We wish to show that

f(xl) - £(x2) 1

f(x3) - f(xl,) k - x71

We-Jhaved

i.e,; rm -.Mk- nx2
t

differences,

6

Hence, by Lemma 1,

n(f(xi) - f(x2)) = m(f(x3) f(x4)) . 4

4 .

since f is strictly monotone, f(x3) # f(x4) , and hence

n(x1 x2),= m(x3 - x4)9;

mx4 . Hence,,since f preserves equality of

. 1 '

gnxi) f(-72). = f(mx3) (mxil)

9

6

e



f(xl) ;(x2)

=f(x3) -of(x4) n

as required. The corresp(NV.ng result for k- rational and negative follows

immediately if we first reverse the ord2r of one of the differences; for

k.= 0 , the result is trivial. Hence. f preserves ratios bt differences-when

-We ratio is rational. '

2-2

1

In order-to complete the proof-of the theorem, we mist show that the

result still holds when the ratio of differences is not necessarily rational:
-

this is where we'"make use ,o' the definition of a re 1 number in terms Of cuts.

We treat' only the case of f monotone increasing: he treatment when f is

decreasing is quite similar.

r te

SdRpose that x3 # x4 , and that

xl - x2
f(1)1.7 i'(x2)'.

x3 - xii.
r
1 ' f(x3)-- f(x4)

r
2 '

-^N,

r
and

'

and assume that r
1
,(and hence, from the strictl;monotone property of f , .

r2) is positive. (The case 1.41e r2 negative iS'easily handled, as before.)

Let 111:'sbe any rational number in the cut.correspoading.tp, ri , with m ,and

n positiveintegers. Then

i .
m

.,.- , i,,,,,,i ...ti.d.,..t -, 4-. '''''''I < 1.:---
10

n 1

-x

2
and hence

n x3 - x4

m(x3 n(xl - x2)

i.e., mx3 =4* < nxi

Hence, from Len= 2, and the assumption that is monotone increasing,

_

.Hedbe, from Lemma 1

f(111x3) fenix0 < f(nxi). - f(nx2)"
m(f(x

3
) - f(x

4
)) <.n(f(x1) f(x2)).;

1
f(Xi) f(X,2)

n
<

f(x
3
y f(c )

14
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Thus
n
- belongs to the cu which corresponds to r2 . By an argument which

is completely similar, we can show that if m 1.7 does not belong to the cuts

which corresponds to r then - does elon to the cut.which porres-

pond-6 to r2 . Thus the set of positii4 rationals 1 ss than rl. is the

same as the- set of positive rationals less than -r . ence r1 = r2 ,

and the the6rem is proved.

Corollary. (cf. Exercise 1-6.52 If f R -)R strictaS"Monotone, and

if f preserves equality of differences, then f is a non-singular affine.

transformation, and hence f is isotone.

.

pProof. From the theorem, f preserves ratios of differences. Hente

x - 0 - f(0)
x 1 - 0 f(1) - 1'0)

Let f(0) = p , and let f(1) - f(0) = q . Then, because f is strictly

monotone, q 9 . Thus,.

: t

x '-f(x) P
q

f(x) = qx + p ;

f x qx + p , q # 0 ,

and therefore f is affine and non-singular. Clearly f is onto,'ence f

Comments:

1..
..

Tbeorepe2-2.1 and its corollary; show that-the non-singular af` dine
0

transformations of R are those isotone trarisformatVas which preserve _

equality-of differences (nnd-hencq rat, .os of differences), "---

2. By comparison (cf. Exercise 1-6.31) the similarity transformations of
..

P
% R are those which preserve ratio

..,

. ,
.

.

3. A similarity transfoion is, of lAurie, la non-singular,affine trans-
.

/

formation, and preserves ratios of differences as well as ratios.

64
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As a furthel. example of the properties of the real numbers, we give they

promised proof for Exercise 1-6.33. is result .will fie used many times in

the Subsequent discussion °L. :measure functions, in relation to the matter of
%

change of unit /change of sale, and in the determination of the structure

(as afio scales) of,th sets of admis'sible length functions, area functions,

volume functions, etc.

Theorem 2-a.2.

-t,,)

(a) Afunction, "T -.. (R+,4) -4R+,+) pis a ilomomorphism, if and .....""7 (,
only if it is a positive similarity. 1 4 4-.,

k(b) Every enAmorphism of (R4,+) is an adtomorphism.
,

.

.../

(c) The set of automorphisms of (R44+) is i group (under composition),.., and this group is fsomorphic to 01
+

-, ') .,
at.

Proof .

(a) Tn one direction the proof is trivial: if f is ta positive

similarity' we leave to you the proof that f a homomorphism.

We shall prove that if f is a homomorphism of ,(11+,+), then f

is order-preserving, and f is a positive similarity.

If x , y E R+ , x < y , then there exists z e R , such that

x+z=y. Hence f(x) + fez) = f(y) , and f(z) > 0 , therefore

f(x) < f(y) , and f is order preservings (I.e., monotone increasing.)

For any. x R
+

and' m a positive integer,

flmx) = f(x + x,+ + x)
(ny terms)

-

= f(x) "4-f(x) + + f(x)
(m terms)

.+3

= mf(x)

Hence
. f(x)_=011 = mfqd I

. so'that.

Combining these, results, we get

f(-k) =
1
- f(x)

,.m m

f(2 x) =-2-f(x)
n

.

w.

,
.

. . , .. ,m
for every vsitive rational numbele,...i.F. Thus,,if g. is rational, and .If

.

f(1) = k > 0 , we have f(q) = qf(1) = kq . .
.
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2 -2

a ,Now suppoS:e that r is any positive real number,xlid let f(r) = t . If-,

r is rational, then we have shown above that t = kr . r is not rational,

we know (from trichotomy) that exactly one of (t = kr jt < kr ,t > kr) holds.

t
If t < kr , then iz < r . Hence there exists a rational numbe? q with

<q.<r . Since f preserves order, we have f(q) < f(r) . Bui q is

rational) hence f(q) = kq < f(r) = t . But 17.<.q ; i.e.,'t < kq . Hence we

have a contradiction, and therefore t 4 kr . Similarly t 4> kr , so that

t = kr , and the proof that f is a positive similarity, is complete. Zarts;

(b) ax (c) are left for you to prove: the)proofs'are quite straightforward

Corollary. Every endomorphism of (11+,+) is 0. non-singular, homogeneous

linear function.

Proof. Homogeneity is.all that-remains to be proved. We have s\hown'that

there/is a k e R+ such that, for all x e R+ , f x-)kx . If now" c,
D

is any posttive.real number, ,f(cx) = k(cx) = c(kX) Cf(X) , hence if is

homogeneous of degree 1 .

'WNW

Exercises 2-2 (continued)

5. 'If a , b , are positive real numbers., denote by A = (0,a) , B.= (0,b)

the-"openP initial segments of positive reels legs than a and , .

respectively. .E.dOla, of the sets A , B , has a structure with'respect to

addition,, and it'has the usual order, but neither is an additive.
$ .4.

semigroup, because neither set is closed under addition. A homomorphism

-f : (A,+)
+)

+) his a funetion'which presents the (incom lete)

***100additive straWure.l. ,rove
'
that,

.$

(a) e ry such homomorphism is monotone increasing ari

(b) 'there 1.6 a unique b Such that f' is an isomorphism from A
. 1). to =and f(x) x' for_every- x 6 A .

(Thiel exercise laied to the measurement of angles.)

if
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6. PrOAe t t the set of automorphisms of the ordered group (R,+,<) is the
1,0,

posiiiM similarity group S+ . (R member. to consider the behavior of

A' ,th eg&tive numbers.)

2.-2

.f'

any p ova t t the automorphism groups of (Q, +,<) and (Q
+

,

are the respect sitive rational similarity groups. (I.e., the,group

of transformationt- x -)kx, for x 'rational ( positive. rational)

and k a fixed positive rational.)
r

OW(k

8.° If f, is an endomorphism of (R ,+) , prove that f, is fully determined

by its value on a single element of 5'
+

.

9. If f R-411 is a monotone function which is not 1-1 (i.e., for some

s , b , with a A b , f(a) = 'f(b)) and which praserves equality of

differences,.Prove that f is a constant functiOn. [Hint: First prove

that f is constant' on-the interval [a,b] ,, then proie that f, has

the same valuj at every point a + - al , for all integral n , then

use4the archimedean property.]

Our next theorem concerns the monotone
f

endomorphisms of the multiplica-
+'

,tive p , -) of positive real nupbers.. The result qf the theorem

(tha, all such endomorphisms are power functions) is needed fdr the,discusiion

of the theory of "dimension", in relation lo those categories of measure func-
.

Aims ch are ratio scales. ,In the proof of the theorem we need to use

basi properties of power functions, and also properties of logarithmic and

expo ential functions, so we review.these,briefly before stating and proving

the theoreM.
. JD,

-

idwer Functions.: If- a is any real number, the function -f : R
+

.

defined by f:): -4xa' is called a power function. lAsypu know, if x is

d teal number,. and if a is a' positive integer, x
a

is defihed as an

iterated product; but when a is fractional or irrational, the definitioh

depends on the deeper properties (i.e., ,completenesd) of the real numbers,

A*4 and oca can only be defined for all": a , if x 'is positive. To remind

you of the'way power functions "'look" fdr various values df- a a number

of the graphs of power fwfctions are illustrated in the diagram.below:

4

r.
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1

a = 1

ey

1 2 3 4

. ,

Partial Graphs of Functions k -,xa on the Domain R
+

.68
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We summarize the important properties De the power functions

: ^x -4 x
a

, defined on R
(i) If = 0 , fo is the constant function f

0
x 1 for

_every x e 11+ .

(ii)_ If a / 0 , fa is a 14 correspondence of Ir. onto R+ ; in

this case the inverse of fa is also a power function, and

J, \-1 f
1/a

If a .> 0 , fa is monotone increasing.

(iv) Ifs a < 0 , fa is monotone decreasing.

(v) The composite of two power functions is 'a power function, and

a
f f = f .

p ap

(vi) Far; each value of a , f is continuous.
. y

2 -2

[We do not wish,,to get too deeply involved with the Acept of continuity,

wiAch' is probably, familiar to you from your courses iA calculus. You can find

a formal definition in any good calculus text; informally, continuity simply

means that, for all "sufficiently close" arguments, the values must be

. "arbitrarily close" -to one another.]

xponential and Logarithmic' Functions. The exponential and logarithmic

functipns are closely related to the power functions. If, in the diagram

above, you imagine the graphs drawn for all a e R , and imagine the vertical

line drawn through any point x = (a e.R+ ,a / .1) then this ordinate will

intersect the graph of each power function at exactly one point. (This is

not, completely obvious from the partial graphs which we have illustf,s,ted, but

you can easily werify that the assertion is.true.) These points of inter-

section are the points (a,a
a)

one foy every real a . The set of pairs.

a,a )' is a function with4domain R . ,In other words, for each / 1 , 11

this process gives a 1-14fUhction x -, ax , whose domain is the set of all

,real numbers and. whose range is-in R
+

. It,is,not hard to show that thisy

function is onto. R+ ,tand,hence it is a 1 -1_ correspondence of R And R+
4

These _fanctions x a
x

, one for each positive number a except the number
. ..

. 1 , are, .1,of course, the exponential funct'i'ons, and their inverses are the
e

4' ,logarithmic furtc4,Or.l. If you refer again to the power function graphs, and

picture the OltriAtes , x = a , then you will, see theti if a > / , as in-
.

creases as a inczeaps4, while if, a < 1 , as decreases as a 'increases&

That lar the exponential function x 7) a
x

is monptohe, increasing if a >
. _

69
.

7 3



2-'2

and mohotone dec reasing if a < 1 . We summarize some of the properties of

the ,gxponential'and logarithmic functions, and illustrate the graphS of the

txpoffential functions. for several values of a . LThe graphs of their in-

verses, the logarithmic functions,\vibe easily optained from these.)

-(1.) Each exponential function x -4K is a 1-1correspondence from

R to R ; the inverse, which is the logarithmic function

x log
a

x is a 1-1 correspondence from R* to R

(ii) For -a > 1 , the function x -4 a
x

is monotone increasing, and

the function x -51oga x is mondtone increasing.
A

-

(iii`) For a < 1 , the functions x and x -)log
a
x are each

monotone decreilsing.

(iv) Each exponential-function is an isomorphism from (R,+) to

+
Xl+X2 X

1
X
2 .(R , ) ; i.e., a = a a . 0

,(v) Each logarithmic function is an isomorphism from (R , ) to

(R,+} ; i.e., loga(xix2) = 1ogaixl + loga x2 .

A
(vi) a

x
=

1
, and log

a
x = -log / x .

dja

LThe first of the properties (vi) is reflected in the diagram
4 below, in the symmetric relationship, of the corresponding graph5.]

-..



1.
5

ax a = 5 a = 2

-3

Theorem 2-4.3.

Partial Graphs of Functions

(a) Every monotone epdomorphism f of

function, and every power function
A

morphism.

(b) The set of monotone automorphisms

under compbsition, and this group

group (It -0 , ) of the non-zero
1

pondence f --). a (where f is,

f : x --3xa .)

1
.g .

x ax (a > 0 a

, .

the group (E2 +, ) is a power

on 1147 is a monotone endo-.,-

of te group (E, .is a group

is isomorphic to the multiplicatitte

,real numbers, under the corres-

of course, the 'function.
'.

'71 .
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Proof

(a) Let f : (R+, :) -3 (R+
/

, ')- be a monotone endomorphism., Then-
f(1) .--..1 /. Let, f(2).=113 . .(We could use any st4 1 insteadof'

-,a
,

the number 2.), Then thete is, an, a s R such that .b = e . That

cis, f(2) =,2a . (If a >0 , :then 2a > 1 ; hence f must be mono-
tone non-decreasing; if a <,0 , f,mttht be'monotone non-increasing.)

We shall show thot f(x) = P., for every x E R From the homo-
. morphism property of f,it is eau to show that f(2n) = [1*(2))11 for.4 ,

every positive integer n ,hence forevery number 2n f(2n) (2a)n
' na , ma'

.., 1/n.n., 4r 1/n -,112 =k2 ) .. In the same way, f(2) = fik2 ) J=if(2 )J , so thatf(21/n)
(2a)l

/n (21/n)a
We can combine these results to obtain

f(2m/n) = (2th/n)6 for every positive rational number /21- . We wish
n

S.

to extend this result to show that f(2Y) = (2Y)a for every y in
R , because the set of all such numbers 27 is the whole of R

+

. )
,Firstly, suppose that a is* . In this case, f(21) = (2(4)° = 1

for vqty positive rational_ q , and hence, from monotonicity,

ft( ) = 1 =(2Y)
o

for every positive number y We can deal with4=i
... 0 i egative (whether or not

,

'a is mero) after aes4ing with the'case
a non-zero, y ..positive. - t

Suppose next that f is monotone and non-decreasing (i.e., a > 0).
We seetto prove that, for'all ir > 0 , f(2Y) = (2Y)a . Suppose.
that this is nottA for some y = r > 0 , And that ,f(2r) < (2r)a4

pen, 2r > 1 -and hence
. .

f(2r) > 1 . That is

1 <'f(2r) <(2r)a ...
()

Hence., usi the fag that the function x -3 xXid- is Monotone

increasing, we, obtain

t" 1. 14<-[f(2r)]1/a < 2r .

Hence, from the monotone increasing- ;property of the:funCtion
.

x --,loga x , and put,#ng z,= log2( Ef(2r)11/a) , we get

0 <z <r .
400 -

41;0o4Hence, there is /a positiyerat nal number q , such that

4

Z.< < r

. - -

ond therefore; using theTmonotone increasing property of the function
x

:1fer42 ,
.

. .

,
,

fr(21.)33- la = iz .<2q < 21' .

,--_ 72
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Hence, from the monotone increasing -propeAy of the finction

x xa , 4(a .> 0)

.(1)
;,

But

/

f(2
r
) < (2q)a < (2r)a

f is monotone non-decreasing since:4 2

-

,r

Because q is rgtionel, f(2q). (2q)a , hence

(2g) < r(2r), .

ilut this contradicts (i; and lierice f(2r) (2r)a . Similarly we

can prove that f(21.) 4 (2r)a . Hence f(23r) (23r)a for all

positive y , and a > 0 If y = 0 , this statement., becomes

f(l) = 1 , which we have seen is true becauSe f is a homomorphism.

If y < 0 , then we have

- f(1) = f(2°) = f(2 02-Y) = f(2) f(2-Y)'

Hence f(23r) .[f(2-Y)]1 : But -y is positive, h6nce

f(23r) = [(2-3r)a]-i = (23)a .-

Hence, for all real y ,

f(2Y) (2y)a

That is, for all sx e R ,

f x
a

.

4
The treatment when a < 0_ fg.eptirely similar, and we conclude

that every monotone endomorphism_o(R , ) is a power function.

The converse (that every power function is a monotone endomorphism)
-

rt

foll 3t directly fromwellAnown properties or tht power functions.

(b) Because each monotone endomorphism is a pOwer function ,x

a monotone endomorphism is a,monditone automorphism if and only if

a! 0 , anthere is thus a 1-1 correspondence 9 :'f Of

monotone ixtomtrphisms and non-zero realnumbers.

.41aPe'
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Remarks:'

/

A

al
a '2

If fl : x , f
2

: xy-P x , with al and a
2

non-zero,

then the composite function f
1
f
2

takes' x -) 'kx
92N(11

= x
ce"P2,

.

,

Hence ci(f1f2) <1:( fi) cR f2 ) andl acp is -an isomorphism.

I
0.

1. The above proof is quite lengthy, but not inherently difiVult. As is

common in similar theorems (e.g., Theorem 2-2.2) is qui-LC eaS Ito go

from the homomorphism property to arguments involYing the rationa numbers

(in this case the rational powers -2q) and the difficult step is to move

to an argument which applies for all real (or positive real) numbers. In

the above thedrems, we were able to achieve this extension by using mono-

tone properties (proved in Theorem 2 -2.2; part of the hypothesis 9f Theorem

2-2.3). We coulfl equally well have assumed continuity (in Theorem 2-2.3)

. and achieved the extension from the rationals to the reals.by a "conti-

nuity" argument. Carried through in detail, this is more complicated than

the argument from monotpieity. This is not surprising, as continuity is

a more complex notion. -*

7 /)(

2. The-proof of Theorem 2-2.3 could have been deducdd from that 4 Theorem
.--, .

. 2-2.1 by using a logarithmic/exponential Isomorphism of (R+, -) and

(R,+) , and the fact that such'an isomorphism is monotone. Thii idea is
. ,

.conveyed in the exercises below, in which we have an "additive" equiva-

lent of Theorem 2 -2.3.
,

Exercises 2-2 (continued)

10. Let f : (R,+) -4 (R,4 be a monotolle4m1orphism. Prove that
4

(a) if, for any -b f 0 ,f(b) = b , then f is the constant function

f: x'-4'0 for all x e R ; '

o (b) if f is not the constant fujictikon, then f, Ls d.-1; and, f is

strictly monotone and preserves the equality of differences.

II- Use EXer4se L0, and Theorem 2-2.1, to proye that if P : (R,+) -4(R,+)
li- . .

is,a monotone,homomorphism, then there is a ke R , slich that
__.

f 4. x -4 kx for every x e 11 . (I.e., f is either the constant

"zero" function; or f is a similarity transforM4tion of R ,)

it

c
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12. Prove EFgrcise 11 (as a direct consequence of Theorem 2-3.3) by using

the eXpO ential/logarithmic relationship, x *-- 2
x

as illustrated in

the commutative diagraM below, in which the function g is defined by

composition) so as to make the diagram commutative:

X

2x 2x
(R+, ) )

at.
A.*

,

13. _If' f : (R
+ ) +

.) is a homomorphism, which is monotone on an

open interval (a;b) (a / b) , prove that f ,is monotone op R
+

.

[Hint: procegd as in the proof of Theorem 2-2.3, to pioVe that

f : x ->xx; first, for all x = 2g (all rational q) ; and then for all

positive real x in (a,b) . Then show that any zle R+ can be written

as z = xy , where x a (a,b) and' y = 2g. for somee, rational ci , and

use the homomopphism hypOthesis to show that f is a power function, r

and hence monotone.]

14. If f : (R,+) (R,+) is a hOmomorphism, which letnonotone in any

open interval (a,b) (a / b) prove that f is a similarity tran-b-

formati,on, and fiende monotone on R .

15. Prove that f : (R,+) -)(R,+) is an endomorphism of the group (R, )

if and onlyif f(0) = 0 and f preserved the equality ofdifferences. f

16. 'Prove t (R +, ) (R
+

) is an endoMorphism of the group
+

(R , ) thIgnd only if f(l) = 1 , and f 'preserves the equality of

ratios. [You should prove this directly, and also indirectly by using .

Exercise 15 and the exponential/logarithmic relationship as in Exercise

12 above.]

17. If' f : R -313 preserves the equality sof differences, prove that the

function g. R --) 13 defined by g : x f(x) - P(0). , is an'endo-
.

Morphiem of the group (R,+) .

IC%
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*t.

18. If f : R
+
-li

+
_preserves the

.

equality of ratios, piove that the
+ + f(x) .function g : R --)R defined by g : x.-, ?ry -, is an dndomorphism '

of the group (11+, .). .
..:

Remark: The various results proved in this section and stated in the exercises,

ill trate the close pa /allelism between the homogeneous affine functions on

R , and the power functions on R
+

; and between the affine functions on R ,

and thepositive-constant multiples of the power functions on 13

+I. (I.e.,

the functions x , c > 0 ,aell

I

Exercises 2-2 (continued)

_ 19. If f : R
+
-4R

+
is a-monotone function, such that the restricted function

I-1

,-+ . +
, +)IQ maps (Q ,+) homomorphically into (R ,+) , prove that f is a

positive similarity.
,

/Remark:' 'The result of Exercise 19'above can be furthar. generalized. If you

are fabiliar with the notions of topological d4hsity, and continuity, you

can prove that if f : R
+
-+R

+
is a monotone (alternatively: continuous)

function with the property that f': y -'4y (k e R+) for each y in a
/

dense ...subset of R , (e.g.; Q ) then f x akx for every x'e R+

4

Powers-of Functions. Let A 'be any set, and let f : A -+R
+

. For

every real number a , we can define asfunction f
a

: A -)R by

\-1 fa(a) = [f(i'l) }a .

The function ?:4 is called "f to the power a" , or "f .to the a" .

Thus, for each a , the poyer operation is an operation'in the set G of

all functions from A to R +,. You should prove that this operation has
.

the following properties, related to the algebraic structure of G , which

'was discussed in Section 1-5:

(i) f° = 1 (the constant function).

(ii) (fa)° = (#4!')a = fc°

(iii) (f
1
.f

2
)a = fla

2a

(iv) (kf)(1 = kafa -(k > 0) .

8 76 -
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If you remember that many of the common measure functions have valued

in R , you should not be surprised to learn that we shall need to use the

"power" operation in our study,of the relationships between ratio scales,

when we consider.the subject of "aimension".

Exercises 2-2 (continued)

20. Let d : R x R -1:1 be the difference operation.(.6.,' d(x'.,y) = x - y)
0

and let f : R -)R pe a function which preserves the equality of

differences. Prove that the function g : R --> ft ,.defined in Exercise

17 above, makes the following diagram Commutative:

R x

d

R

'f x f

> RxR

g

R

.1.

Conversely, prove that if, given f : Re4R , there exists a function

g : R -R which makes the above diagram commutative, then fi preserves

the equality of differences. (In other words, for any given f R -) R
. -

the existence of*a function g which makes the diagram commutative,

is equivalent to the condition that f should preserve the equality

of differences.) Now use the result of Exercises 17 and 12. to

give an alternate proof of Theorem 2-2.1 end its Corollhry.

2-3 The Measurement of Numerosity

The ideas involtred in the empirical measurement of numerosity (a, clumsy

word, but probably better than numerousness'.) are so simple, and the struc-

ture of the most appropriate value set (the set 9f positive ightegers, whose

prehistorical development was undoubtedly due to the empirical properties

of the measurement operation known as "counting") is so closely, related to

the attribute that we wish to measure, that numerosity measurement is ignored .

1t,

78i
O

N.



L.

tya

in many treatments of the general subject of measurement. We shall not ignore

it, becaVse it is instructive to examine the measurement of numerosity in fhe

same spirit that we shall use slater in the discusion of length measurement,

and in other more compliCated measurement situations.
A

As we indicated earlier, we shall assume that we are fully faMiliar with
ri

(except'the real number system and its vaxtious subsystems, and that,. for moti-
0

vation) we have developedethese systems without direct appeal to the real

world and empirical ideas. We will have some difficulties, dueto the fact

that moot of us work with an intuitive rathej than an axiomatic set theory._ -

It is hoped that this will not obscure the main features of the development.

In outline, e informal idea If what we are going to try to do when

setting up measure functions, is as follows:

(i) Ihere is an attribute which we set out to measure. We cannot Au 0

'define this attribute, but our fee- ling that certain objects (which

male up the domain)'possesd it, is sufficiently clear that we are
a

preperedtvestabli:sh empir ical procedures which, generally aided,.

by induction (i.e., empirically-inspired guess work, generalizing

from particular cases; not mathematical induction, which is really

deduction) enable us to give a structure to the domain. In most

cases this Will involve the establishment of relations and opera-- -

tions on the,set of objects in the domain. The domain will thus

be given an empirical structure. In many cases the real numbers,
3

or,some approptia te subsystem, will have a comparable structure

tend usually much additional structure).

(ii) We select an appropriate subset (call IA, V) of the reels, and

we ask ourselves the fpllowing questions:

(a) Is it possible to map the domain into V in such a way

that the structure is preserved? I.e:, the mapping should

4

t be a homomorphism. (Sometimes the.mapping is 1-1, (i.e., .

anisomorphism),'and sometimes it is,onto. Fre ly we

are able to establish an (empirical) equivale e relation'

on the domain (related to the selected attribute which we
,

_.
. wish to measure), and'we loOk for a suitable structure-

t , ;
preserving mapping on the resulting set Of equivalence

classes.). ,

, .
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(b) If such a mapping exists, is it unique?
.

(c) If more than one dtructure-preserving mapping ,(measure func-

tion) exists, is there any relationship between these func-
4

wtions? (E.g., can e get from,one-toganother by cOMpO'sition

with an appropriate automorphism of V $)

Let us keep this plan in mind, and return to the question of numerosity

measurement. The.idegs of attribute,* domain, and "equivalence /ith respect .

to the attribute" tend to blur together, but roughly speaking, the idea we

have in mind for numerosity relates to the empirical,process of pairing-off,

or _matching. ,Aselements of the *domain, , D., we think of sets of objects

such as bags of atones, or flocks of sheep,.and we confine our attention to

finite sets. we must say what we mean by "finite"; so,'-o make matters as
_

N

simple as'possible, we draw on our assumed knowledge about the number systems

\
.;:.

and,define a set to be finite if there exists,a 11
.

coXrespondence between the
V ,

set and dsegment (1,n)4 of he positive integers. (Wecould, if necessary,
.

,

avtid the use of J
+

at this stage of th evelopment.) . o .'
:-.. .

In the.dOmain D , we can compare'e ementp- (i.e., finite sets) with'
-/- ,

respect to numerosity by the empirical process of pairing-off memberg-Of the
. - .

sets:. if we can complete this pairing-off of the members of two finite sets
.

I

S , T 1 without having any 'members of either set left over, we say that S

,, ha'g the same numerosity as T , or that S and t are equally numerous.

,;,. ,(We write his S - T ; we may read it "S is equally numerous to T" .) As
\,.. _.// ,..i:' , v

.,;:-

fe-r-as we can tell empirically, ...f. la an equivalence relation on our domain.
t

(Die (to the difficulty mentioned earlier, yOu probably find it herd to
.

, - as an experimentally-defined relation, whose .transitivity,, for example,
ti ,

stsbmue -terified exlerimeptally; hen st dy lengt meas emeni, the torres....

).ponding situation s ould be more hear.. I our do in is infinite, (or very

la ) we ca of test all possieilitkes, sp'we use auction and siMply guess

i
, -

,that, f we ad unlimi&ed time and patience, we could
1

i\

verity that "' is ,

A

. equivalence relation.: (Scientists,make inductive gueaaas like,thIs all'nhe,

time, ge nerally in much less "obvious" situatio with that,
.

1,
,,\ ,.

.

should they have guessed-wrongly, this will eventually e pme empirica
.

,,..

evident.) We denote the equivalenee class of a set' S
..

1g , and theopt
.

Of. all eiguitialencercl4sses'by D. ".-'

V*4

9-
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The very same empiridel process (pairing) which enabled us to organize

'our'dbmain inter clsseS of "equally numerous" sets, enalples us to define

ahother'relition, that of'"less numerous than" () :'S'<:T if, 'n the

pairing process, the members of S are exhausted first; i.e.,,each mber

of S is paired with One of T , and there are.elementsof T, remL ng.

We assume that, as a result of many trials, we have discovered that this

relationship doer not appear to depend on the Nay in which we go about the

matching process, and that as far as we have tested it, the relation '< is

transitive. We alio discOVer that, for any two finite sets S and T.,,

exactly one of the following olds: So.T,S<TjT<S; and that if
Si » S2 , Tl;; -T2 , and .S1 <T1 , then S2 . T2 . From all of this we feel

justified in assuming that the relation < is transitive on D ; that it

yields it.Cortesponig relation (for which we use the same symbol) on the set

15 of equivalence classes 'of D ; and ,that this is a (str.4.u...total) order

relation on D, . In other words?..the relation < op D , defined by

S °< T if S1 < T1 for any. S1 c S., T1 c T ,

is an order relation on D .

A4 , 0
We consider next whether any otheltempirical structure can be established

in Do, bearing in mind the attribute (numerosity) _in which we are interested.
0 , -

Several possibilities need to be considered: for example, the operationsc,of'

union and intersection can be carried out as, physical, operations, and expeit-

ence would suggest the assupption that each.is.associative and commutative,
rk`

and that each, distributes dyer the other. However, not all of this structure

seems to be. immediately relevant to Our intuitive idea ofnumerosity. After

some- cgnsideration of

t1 operation of

(tearing in mind

possibilities, let us imagi e that we have concluded

union for disjoint.setsos oing totbe relevant and

ogr evdtual objective Aoseeting.up a "unction to the .

positive integers) unions of disjoint q.ets should map into sums, undeir a, . .

.,,

numeroSity-measure function. At this point a difficulty. appears: not all o i

12.: . (forpairs of. sets in our domain are disjoint/yam even
,

if S1 ,.2' j S3 *c., D),

s1 fl S2 =s2 n3 S3 = 0 , it .is not necessarily true that S1 fl S3 =0. Qin

the other hand, we discover that if Si, fl s2 = 0', sin sL = 0 axe SI ~ Si )

S .. S , 'then Si U'S2 . S' U S:., . This
. ,

t.we might Oift our :%
. . ,

'attention from D *to ii, d consider what fu he empirical numerosity _

04.

structure we can establishpon B .,'We could then ,look for a structure7pre-_. .

While
;.,

'serving map from D to the set J
+

of positive integers. ne thinking..

along these lines, we recall that the natural mapping D 14 55' (defined by,
.

- 0



o S 4 S , for each finite.set S) preserves order

be composed with, a suitable mapping from D to
+

, the composite map would

have the desired property of mapping' equally numerous sets into the same

Positive integer. .:
I

v

'' .

,, . .., .

We now proceed to establish an operation U in D as follows: if S ,'

e B , Select Si e g , T, e II° , sttli that S1 n Ti . 0 . (This involves an
. e- .

assumPtion fpr which we expect have.empirical support.) Now define f
. ' 4

.,_
66 . ' . 6

(TheT...°S ii Ti e notation on the right denotes, of course, the.equi-
' "1v , ti

enee'clISs of S
1
U T

1
; it is sometimes convenient to indicate this ".dis-

__/Joint`r;ttnion't by the notation S1 U Tl .) Empirical examination of the roper-

Nties of the. operation U on D suggests that we are justified in making the
-...___,,i \

,following assumptiohs: t

, . . .

) U is associative and commutative, and .D is closed under U ;

(ii) IL\ p eserves order, inthe sense tart for S1 , S2 , T e D ,
....- .

2-3

d that if, this were to

61
2

;

fn other words, the' system' (1)s, IL <) s or

S1 SL , T <

.. .. s .

We now turn Ofir4Oten on whether there is a mapping
t + . ',, Iof D into --,,T ( the 'Set of - positive :n cgers) whic preserves this "numer-

dsity structure" Are two pplossibilit

an ordered- qbelia ,7-0.se;:iigroup \'Ti.01, ct lisedd iti

ered abelian semigroup.'

st io

0 \7

s'to contider:r S is

, and it is also an
.* ..*:::""-- .--

....

t .

ordered abelian sMtm.grailp iwiti$,' t to multi
...

both poisi,billtied in mind. T6 p lure
--, , . . ,

a suitable, function isik /I ;ze.1..'

-... . ...,...I I

e P I

and, py.i.' 6
..,

tiny S,, e D , e ta e,a0,5/ S,e

larder ed set orils. it il;Apt egers 1\302- , .3

finiteness ensures that this pra Oss will ,pe

2 \s , . and it seems natural to test 1-, relaten

yields a suitable structu4e-preser
1 ,
undtioni.

stA, for given S ',. s is Uniquel sieternined;

psingle-valued. That this is so, follows rom t
.'

a
T ,

procedure 'dstabliOhes a '1,71 correspondence

so thit if, using a different set from,,
..

.,,

Lcouniing,;procegure, we were to

.the transitivity of the 1-14:C
)
",

existed a41-1 dvrespondencet

ic fion, so we should keep

e. attempt to 'set up such

eeas of counting: given

en s Qf S With the

arrive at

rresponden

etween the
;-;

(ai mentioned in the previo s section)

proved within foie fox 1: sy em

a

assumption of

to atone positive integer

((3,$).) to see whe heroit

We Musti first make ertain

thak, the relati n is

t that 4he co ing
the segment ,$)

or , a fiteetpai r -ng in the

ifferent ok-itpa integer s' ,

on 1../ouldimpl that there

(1,$) and W) . But
\I

ibllity of. this can be .
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_7

a function T: D -4.1+ , and a related function 2: D -+J! . An arguMent

similar to those used above shows that 2 is 1-1.
,

)-, , _

a We consider next the way in which the counting process is related to

. the empirical order in D , and the resulting_ order in D . For ;it.< T , the
.000o* .:-

empiric procedure for establishing this relation-Yields a 1-1 correspondence
.4f.

of S with a proper subset of T . It follows that if T(S) = s , T(T) = t ,

. .

then there is a 1-1 correspondence of the segment (l,$) with a proper subset

of the segment (l,t) . From this it can be proved, purely within-the follral
1, ,

. system J
+

, that s < t . Hence T and T preserve order.

We look next touaee whether 9) carries "unions" in D into either sums

or products in J . We soon discover that "unions" are not carried into pro-
,

dlictLlis far as sums are concerned!, it can be proved, within J+ , that the

segMent (l,t) corresponds 1-1 with the set (s + 1 ,s + t) = (n E J
+

s 4 1 5 n t) ;?that (l,$) 0 (s + 1, s + t) 0 ; and that

(1,$) U (s .+ 1 , s +cee. (1 ,s + t) . Hence sp is an isomorphism of the
.

/^.
11 <)

t

ordered semigrou k/) ,-, <Z) into the ordered semigroup kJ ,+<) .

vj
4

It is natural to ask whether 2 (and hence- T )' is onto. Before we

can consider_this,guestioniseriously, we have to be much 'clearer about the'

domain AD than we have been. If we restrict D to sets of material objects,

which we might think of as objecis composed of fundamental physicaPparticles,

our question would be equivalent to asking whether the

particles in our universe is finite. This is not a w6.

easily answered: In this connection we point out that

ontoness of q is. closely related to the m:rical propertieseiwhich we'bAve

asalaed (inductively) .for D and to our cription of the.op ration U

If S is any i-element set in , ouras jimption th t the op

always be performed, implies th t we can iterate the operatio

for every n e_J and

number of fundamental

stion that can be

the question of the

'g
n

F S S LI: 5%,.... U S (n to
+

that 2 isonto. If thits oper tion becomes impostible for some m + 1 e J ,

.:_,.....___ /,

it means that we have a set S with m objects, and that ' here is no:m

single-element set which is-disjoint Vith -0- . That is; elements of'
'X

. our "universe" belong to Sm , and our "universe° of object Ls finite. ThiS4'

meaas that our assumption that U can always be, carried out as an empiriCa1.
.

operation (for any pairlof sets not nec sal-4y disjoint)-is invalid, d

alloy.

that :05, U) isa semigroup, and that T is onto J /. .

D to include sets of mathematical objeCts, such as natural numbers, t 4

is easy to shoiq

cf.., -,"

ation can

o obtain

ence we conclude.

hence the system (D,U) is not asemig oup. On the other hand, if we.

5i vt

, b 82
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The measure function which we have set, 4 for the measUMent of our

-vintuiiive notion of numero'sity,' is knowtilLs the ,cardinal meet

set, and its value on a set is.the cardinal number ofthat

there are several questions which we might reasonablyrask outselyea:

2-3

e of a finite

It this stage

(i) Is :IT the only numerosity, measure on D vSuch

isomofphisia of the ordered semigroup (D

And what ik,wt consider other value spacessuch

that ,islan

into (J +,, <) ?

as Q or R ?

Is it possi le to extend the domain of -T , so that p still

corresponds o intuitive idea of a nilmerosity measure, by'

dropping the res iction that sets in D be finite?
1

iii)- What about the other operation (multiplication) in J
+

? Does it t

fit into the picture anywhere? 0
. 1

, ,

The second qujtion is tf considerable - mathematical interest, and, its

investigation led Cantor to the theory of transfinite cardinals, You will

not be surprised to learn that these arse important in the mathematical theory
l......-

. of measure.

Tne.firq question has two parts. In ord INto attack the first Part,

let 14 make the assumption that the cardinal ber measure function cl) is
-, 1

onto J . This implies that P is an isomorpaims' If there exists a second
- 1

- isomortism
..., .

i 2'1 (5 , u ; <) --) (j+:4:;<)4'
. .,

4..

..- .
not necessarily onto),-then we can combine the (compositional) inverse of '14

. 16.

with gyp' and obtain an isombrphism ..se p
rl

= p (say) of thebrdered semigroup
, + -ft ..% 1.1,1.\'''.
0. -i-5) into 'tself. Let us see what this itplies: kr (341) gi.k:,,i1. ;then

, \
,/ 4

., \ t: ,s, 1

1,04- p(1) + .:.,..1- p(1) F,11.P(1)'="* ..p(ri) . 0(1 + 1 + ....+ 1) = P 1

4
(31 term) (n' trms).' ii.;;W.4, 1

.. ,

. , \
4. ' f_1;\ 1.

,

Let Pk denote theffinttion., n -7; i for each,n d J jive-check readily

that &Pk d, in fict, an isomorp sm of "Jr into_a prOPer subset 1 itself,

the ordere . semigroup oi' all posi tve pultiples of 1 : -(See'Exercise,1-6.35.)

-

'Thus

lava, all

numerosit

the stmic

to the de
A

e

4

.

for each poditive integer k the composite Map- plip 'seems to

f the structure-preserving properties which tze demanded for a

t is easy, to shoW that the set of all Nppg p, has .

.

ern
- r4 A ]

mIgroupunder composition. group4is isomprphp(This

) )



If we consider the next,question, that of the existence o' numerosity

measures whose values are not, necessarily integers, we find4t1lat the situation

is quite similar to that just discussed. If the value space is taken to be the

set Q
+

of positive rationals, then the appropriate functions r composition

with the cardinal measure function are the functions

\;

Pk x

for, each positive rational k . In passing, we obde e that the numerosity

measure functions corresponding to measurement in dozens, or by the score, by

the hundred, by the million, etc., belong to this category. If we go further,

and permit values in R
+'

, we reach a similar conclusion, except that k may

then take on any positive real value.

At this point it is convenient to give a formal definition of "numerosity

function ", definition which is in keeping with definitions which we shall

give dater for length functions, areerfunctions, and-so on. We define a

numerosity'function (with integer value's) for D , to be a fUnction

.T : D
+

such that

(i)-- if 'S. and T belong to T , with S T , 'then- T() = T(T) ;

i
(ii) if rS and T 'bel9ng 16 D , and Sit) T = 0 , then

'cip(s u T) . TO) + q(T)
1

i .

,

In other words, all,we require is that ip should give the Same value to
a

,.
equivalent sets; Eind that "disjoint unions" 'Should map into sums. The modf- ...,_.

. 1 , ilk,

fication needelfto permit values in Q and e are obvious. We slant out

41- that if 15 is a semigroup, then it follows that a numerosity function T '
i. P.

% ./ + %will .induce an isomorphism f CD , U) -01 ,,+) and that .ag yOu shouldr' 4,

veri y, the definition' implies that a numerosity function preserves order.

'(Thi is a result Of .the cloOe conrection b tWe he orde properties of

and 3
+

and the operations U* an
OP

4-i d. J
-+ tl.

A tf
o _

if. nd only,if there s ,sc,_ p 3, suc h tha m + p . , n0'd, larly for

D ' :

... . .

.

.)- i'-'

c ..
. .

...

The operation Iii is a binary operation on, Il , and hence determines a
t

.
,

function U : 15 x 5415 , T4W-relatipiwhipOf,thi!'s to addition in 3+ is .

conveniently indicated by thWfb1lowilig,diagr14, whose coAnutativity is equiva .J.

.

':.'.. -.; .. ......',;.;" ,___. ,.:.........--
thelept t the defin-OOrivof\ (ri:-. (Theiliaping, .,I X. LT is t carteSian product

-- 0 '3 .
,,,°- ? ',. . ^i .7 - ...

: MaPpi derined at the end lof ,Sect.j..p.htd..?-5 ) 7 : '''

, ...

--
... ----,..-7,, ,. 3 1 : " - .P... t . .

. ,.f. . .. - . . 4- . .--'

, 4"-----



Df D

D

X

P

O X J+

/114 addition

+J

°'
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.-We hrpve still to consider question (lit), 'ranch asked _whether there was
,

any place for the second operation in J (sikatiplication) in questions of
numerosity.

If we sully the procedure for forming the cartesian product- to the
, cardinal measure function 9: D J+ , we get a natural mapping

9x : D x D x J+ . As mentioned in Section 1-5, we Carl compose t'
this with ther umultiplicatioxV mapping of q+ x J+ into J+ .) We ailco recall
that the dements of D are themselves r'finite sets , and that the cartesian,
product of two finite sets is a finite set; i.e., .1) e is closed gide r the '

cartesian product operation. This binary operation corresponds to a mapping
from D x D to- D . (Don't ,confuse the cartesian product of two elements
(finite sets) of D with the cartesian product D x D,.) Let us iput all of
these mappings together in a single diagram:
, I

X

D xD > J-+ x 3+

.4.0.-

cartesian ..product of
elements raultiyibation
(finite
sets)

I D
1

tri 1
> J.+

....,

i... , "
element of D x DA corresponding diagram for a "typical"

.-
track of the various functions: . e

5

O

efill in kepjng t
e

p '
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It is-a petTO

In other words',./

is "yes" follows

definition'of-ca

cation in' J
+

,

`

(S.,T)

S X T

l'easonabltquestiOn

is the first diagram

from our definition

rtesian product, and

(cp(Sr, cp(T))

cp() 9(T)

T(s x T)

4

to ask: "Does c(S) g(T) cp(S x T) ?"

a commutative diagram?" That the answer

of-the:counting function". cp, from,the

from properties of -J
+

and.of multipli

which we stated inSection 2-2.

We can give an even clearer diagram which represents this situation, if .'
we assume that S and T each contain

For example, if p(S) = 5 , and q,(T) =

can be repltd;by

( fa a eta1' 2' 34' .

t

cartesian

product
operation'

1,b1) ,(al,b2) ,,(a1,1D3)

2,b1) ,S,A2,b2) ,(a,b3)

a3,101.1 ,(a3,b2) (a3,-63)'

.(a4,b1) , (ati,b3)-

(a b p 10 (a b )
5 1 5' 2 5

))
I

a reasonably small number of elements.

3 , the last commutative diagram

0%

.7""

-

x (1)

(5,3)

'mult.iplication-

opebatIon

What about the other numerosity'functi poR:i where pk :x )kx ,
k 1, It is trivial tO cheek that, whether weduse '1J4' , Q4. , or R4- as
t space, (pkO(S x T) = idcp(g) , ile

ITI3k00)3((PkO(T)1 = 0E40) /0i(T)1. _Hence (P (Vdoel:r<notcirTy cartesi nk
prpducts in D into products in the, image spsCel unless k = 1,: -In other. -

ewords, cardinal number numerosity measure function is d2,stingumshedsfrom: '1A,`the

t

all other numerosity fun0Lns by this property of mapp n c
4
artqsian,products

eleMents of D into Correspqndiwhumberpipdilicts s

m

,age spa



The situation pic ured in the'diagrams above contains the germ of an

idea that will recur over an over agairi in discussing the relationship.of

measure functions. The fact that we had a-second operation (certesian product)

mapping D x D into "D is quite 'special to the measurement of numerosity:

In other situations (e.g., angularmeasures, area, velocity), we haye

_
measure functions 41 , 42 .,14th doMaihs D1 , D2 , (not necessarily fferent),

,a raiationlptween D1 and. D2 '(i.e., a subset of Di X D2) , and a ma ing
,

from the domain 1)

3
of another measure function,, p

3 '

onto 1phis relation
,. . .

.;,.P9 tativiV will then hold.in a diagram ...

. C

-7"-----,

D
1
x D

2

i
d,D

3

1
X4

2
+ +

R x R

'-i st:X.:, , 3 *
- .,

-1040When ,4,, ig,angIe Measurement 4
1

and 4 are length measures,
v. A .,.. .r,y'.. .-,

2
.

,

is division, and ;'46ommiltAiv-e diagram expresse6 the relationship between

length and angle measures which is involved in thk idea of radian measure.

If 43 is an area measure function, 41 and µ2 are length measures; -and

v is multiplication. When 43, is "average velacity", 41 is a-length
,

. function,, 42, is .a time-intervalsfunctiOgOnd v is division. We shall

have more to say later about theseiddas. .

...,

,. . -

By now you might have reached the cbnclusion that we are spending a

great eal of time stating the obyious. In a sense this ii tie, bacaue-6

Lathefo 1 system J , the operations o2 addition and multipAcatibn, and
'.-x ,

. t

. .the inequality re1stion, were all constructed precisely for the purpose of
. . 0

providing .a "model" f* the empirical ideas ofhumerosity. measurement. To
.. 1

' some extent this will be true again in the next section, in which we dipuss

))he
empirical measurement of length, but we feel that itia worthwhile going

....) through jhe development, in attemPt to clarify what!i empirical, and what

is the formal (mathematical) model, and what are the relations between the

two. Mathematical sistems de 'sed for modeling the real world hav habit
r

.,

of developing a life of theiiiown, and this does not ne essavelyhave any
.

empirical coupterpart. .

- 87,'
9

.A

.1'

r

R.
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w
Exercises 2-3, , *

/ .
,...,...

.

1. Prove the assertion macse above, that the set of functlons,which map the

ordered semigroup (J +, +,<) ,isomorphiCally into itself, is an ordered.- . _..7.

abelian semigroupt(with composition es-the semigroltp operation, and an

apprOpriate inequality relation).. Prove also that this ordered semigrotp

of transformatiy2s ivomolphiC to the ordered semigroup (J4-; .,< ) .

2. What is the structure of the group of automorphisms of (J +, +,<) ?

3. Similar to previous exerciee, but with Q# instead of .

We conclude this section with some remarks on a number of matters which

arise in connection with most Measure functions:

Domain: From a mathemdticiants viewpoint, a function is not properly

descried unless its domain is specified.-In most measurementZsituations

one is not only concerned with the domain, but alsof.with efforts to extend

the domain in some meaningful way. In the case of empirical Baasuyes,,this

usually involves important p actical questiong of prbcedure -- ;accuracy,

improved instrumentation and
.

0

so on -- snd.in many eases it gives rise'rto,

philosophical problems., !ix fait, when andlyzed carefully, many of the philo-

sophical arguments concerning measurement turn out to involve questions of

4

In most measurement situations, the initial mathod.6 used for defining.a

suitable Measure fUnction have to be modified when the domain is extended.
.

For example, in cardinal number measurement (by counting), the pairing-off

procese ."by hand" is not aPpropriate for counting_large numbers of physical.

particles) such as are involved in

dev,tces are used. In other sit

t -
adioactive decay, and compliaated electronic

ns we resort to mathematical methods in

order to Ircount,,Illthoutcounting'. (See ,[123.) As a general rule, the
O 1

domain of a useful (empirical), measure function JO extended to --,he point where

thetprocest.of measurement involves a complex mVgure of empirical evidence,

_induction, and mathematical theory.

1

X

Accur cy. As mentioned above the subjects of accuracy And do in are
.

I
.

inter - related.' We shall not concern oursres very much with the practical
c-7

.
A'1

side of this important question, but, even in-conlection with` numerosity

measurement" re point out that our implied assumption of absolute accuracy
10 . . 4:.,

(in counting) is not gelf:lly lialid unless wd restrict the domain severely.

..

/ . i

, - .4 ..\ \ ,
. s. , s" ''

(
k,

1 :* te r ' ,...::' .,1 r j

j 4. I '92
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Accuracy involves both physiological and psychological.consi rations, as '

well winstrumentation. ,the physiologial side, we might instance the T-_r
,t

limited ability to discriminate (visually or otherwise) between the elements

..
.*-..

. ,

of a set in the-domain.! (The
,

elements of the domain D are finile sets.)
2 ,

We recall that; in mathematics,we do not accept that ,a set is wel1,4efine
, .

unless th otre is areaSe method for determining whether or not a gi,v628.88ject

belongs- to the set,
:

and we assume, in effett,
4

perfect discrirgAnatione: In

physlcal Sations this is often' impossible to achieve, even yhen aided biSr
A

* .. . r."

refined instruments. On the psychological side, we have all.the voblems
-

of,..
,a

human error,: memory A
.

d sb on. _ ,
.

..
,

. . ,: 3 .

2

From a mathematical point' of view, this aspect of IheaTanement (accuracY)
. ,

1..aises many interstin$ statistical questions2.j.ncluding lhose involved in

the process of "rounding off ", but consideration of these is not party of this

book.

"....1 . ;
.

k Units. This topic will assume greater importance when we consider a !

meastexe function, such as length, whose image space is th0 reels (or the.

positive reels): For the present we merely remark that, for a gi\en me ure
Ix

. - -

function, the corresponding Unit is the set (i.e., equivalence class of .

_. . _
0 those elementsiof the domalnawhose image is the numbei-, ,I .. (Sometimesla

. . -

'particular
.

particula object in thi§-set is referred to as the,nnit,_puches, we refer,
4

to a fraction as a rational number Where there is more than one function'-
. , ....

r%
I , % :, .,

which is suitable for the measurement -of a given attribute, thd>thoicesof- , 4 -. ,....

re:often equivalent. Once a function is
- .:...,..

chosen, the unit le'fixed;on the*Ot

function and the choice of um.

'"i hand,, if a unit is specified, we shall 6

;

see chat the function is uniquely dete fined. There are,iqpogtant questions

li

..

sunits "'; iscusdcclncerning so-ced "change of units" intla er ection .
I...e,

.

the equivalenee,,/lass of hbse
' 1-i'-,--*:, .,t r

r numerosity MdasilPOWAL' n . ..,).

For cardinal number measure, the unit .is
sets which eacIt-contain a single element. Fo

dozens, the unit ("dozen") is the equivalence

and so on. It issometiges,calivenieme to u se

for'the corresponding function.

Language,

with numeltit

daily lives.

using both f

language agai

22.1.'

class of sets

the same 'name

.?
epents;

forctf4 and

f

Much of the language which we have used abioVe in connet;ion-

measurement, is not the language which we,norma uqeTn our ,
e-. s', 4. 1 ..!*.f,:

.-

t is useful, therefore, to look at a few-equival nt etedements
ti= .-- , t, 4-

of expression. We will'Come back to this .questionjOr .4
.

2 after the introduction of ewpirical length measures.
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1
Camaon Usage Usage As In This section

(i) There are 28 students in this The cardinal number measure of the1 % 0 ' e .
class. ..'y set of students in this class is /7',

,

". .....:

.
7'28. 's I

/
$

(ii) This box contains 121 dozen Th
3

Ages. . of oranges in this box is 12 4
j

.**N(iii) Company X made% profit of The 6merosity in millions of the

profit in dollars made by Company

..X in 1964 is '14.7

numerosity in dozens of the set

14.7 million in 1964-.

In these examples the everyday language is clearly more compact. Observe
also that there are various conventions regarding units and objects. In

4 example (i), the unit is unspecified, but it is clearly understood; the set

of objects (the students in this class) is identified after the value is
given. In,example (ii), the unit (dozen) is named after the number; and the

. -
words describing the set of objects ("This boX - - - Oranges") are separated.

In example (iii)%the unit is "million", the "obje$ts" are dollars, and the

words describing the 'Set of objects are:split up. Company X - - - profit
'1964") .

Of, course the functional description bgcomes much-more concise if we
..--e.-:-----rintroduce approbriate symbolism-i---EIg., if To , To , c

in
, denote the .

t _------- ,A. 12_-
measure functions, and S1', S2 , S3. the elements"'ef'the respective domains,
for examples,a), kii), (iii) above, we may write

..

6

p

. cco(S ) = 28;

.

1
`Pi2

= 1

m
s
3
) = .7

I

99
9,
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-2-4 The Physical Measurement of Length
.

The word "physical" in the title of this section is used by way of

contrast with -the word "mathematical" in the title of the next section, in
,

which welliscuss the question of length measurement in formal mathematical

systems. It does not indicate that we shall be concerned with physical eZip-.

ment, or with most of:the practical problems that attend the physicaleprocess

of length measurement in varied situations..

A

As in he preceding section; we are edrned with an ..Indefine,d attribute

(in this case, length) of certain "objects ;7 These objecis maybe such

entities as an edge of-our 'desk, r "rods ",, pairs of fixed "points" which,

.

represent 'spy locations, and so on. We may think of these objects, intui-

tively, as the physical counterparts ofspairs of points (or, equivalently, the
,..-

. 1
c.

..,
line segments which these pairs of points determine) in a geometric space, but

this is in no sense a definition. In order to hav- simple neutral': word

for the elements of ou

is an object which we 7.)i

ment function,

domain, let u call these ents rods. Thus a*Vd

sh to include in the domain of any length:measure-
/ 4

,

-------, (131A strategy will be similA,t6 that u ,in 'the Ist section. 'a Corres-

_ ____ _

. .

popding to our intuitive idea of length, we estab4gh procedures frr comparing

lengths, and these lead to a certainstructure,on the dOMain,' .Unless we

restrizt the domain severely, many of tha,,otructUral properties of the domain

will be only inductive,hypotheses.) We then aski.trselves whether there are

any tuncti s on our domain, with values in a suitable number.system (e.g.,

the motive reels R }) , which preserve the structure of the domain; and

should there be more than 1ne, how these dirferent-Iength-m asurement fun

tions re related.

bu e,

et us assume that w have decided on a physics procedure for comparing

hs" (i.e., comparin rods with respect to this tuitively feltattri-'

length). We may think of this as placing, two rods side-by-side,.with

on end of each matched, and then deciding (visually, by touch, or some oth r

'way) whether or notthe otheY ends match. If two rods, d1 , d2 (from the

(domain D) , match exactly, we say that they are "equivalent witkrespect_to

length" (or hive the same length). We denote this relation by 411 d2 and.

,.investigate it's properties. We assume that our comparison procedure
-

this relation symmetric. Moreovey our,,intuitive idea of length sugge
.52

kes.

is 141.

'that we should assume that the relation is reflexive. Transitivity is a 'more:'"

interesting matter. In praettee, if we take:three rods d
I 2 ,d d

3
such

91 ,
9

4
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p ft

that d1 d2 ,rand d2 ,'then it is likely that we sha4 find that
cd

1
d
3

. But if we were to take h. considerable nutber (say 10001 rods, wrtit-

the empirical properties-,

(>0_,d-d d-d' dd1 2 ' 2 3 1 ' 999 1000
,

it is most unlikely (whatever physical procedure, we havp adoptgd) that 74
/ 0

will appear equivalent to d1000 10,,(This is well known to parperiters: a

carpenter who 'Wants to tut a large number of "copi4s" of a length of .timber,

does not follow a procedure of cutting copy 2 equivalent, to Copy 1 , copy
3' equivalent to copy 2 , and ;'04 on)

.4
This immediately raises the question dr.accuracy, and what we meant

above by the expression "match exactly". The actual matching procedure is

likely to involve us in th) Ute'of 'vision, or touch, afid.hence might.involve

properties of tight, an phYsiologi6elendpsychological
properties b?' the,

observer. It might.albo involve us in moving rods about, and. in making c6m-1

parnons at diff,e nttimes and 'paaces,.undei-differeht condltiona"of tempera-,

,

I.

rs )

ture and atmmhericpressure,
in diffehnt gravitational and magAetie'fields,

and in various states, of motion. We know, of course that some of these. things'

are important in reldtion to what we are considering (length), and we must
ror

decide what to do,About them. Problems'of thie-sbrt are disftssed in some'
detail!. in Chapter 1 of [2] . Theteclusion that is forced upon us is'that

no physical procedure for lentth comparison can be exact, in the sense that
It will Bead, with no ambiguity, to the structure discidsed below. fact,
if weprobe a little morerdeeply, we 14.11. see that the impossibility of exact-r

ness is not just'a property-of our procedure, but, since-there are

744.

no physical

iclcounterparts of the points and line segm nts of gebmetry, there is.no p
way of even pecifying " exactly" the,elements of our dome n. '

`A

',I horde to make progress in our attempt,to establish

domain we all largely ignore the prketically-important.

'ci ion.; In articular, We.essume, for tile-moment, that o

r
ce ure\ for the rods in,our do4iri-is exact,..,in the sense t

structure in odr

stion of pre-
.1

omparisok proc
#

t it enables us41to

make 4,definite deCision'with respect to eadp pair of''objects; and theft Itp.W.1

)resulting relation on the domain is an equVralence'relation.. -We dgnote.the
- . ,

equivalence" class of an element d , by d , and we denote the set of all
.,

equivalence el

1

sses,-by D .,

O

9
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The comparison procedure used for determining length-equivalence, leads,

(with similar assumptions of exactness) to a relation,of "les' cthan with
c-- ,

respect to length" (<) between rods. We assume thatou± em ical evidence

justifies the assumption*thatthis is a:transitive relation.on D , and that
art

it yield,a Corresponding order relation (<)---6n D

We now examine our domain in relation to the density P tke order rela-

ti on; i.e.,,given di , d2 e D , with' ;dl

that di < d3 <-d2 . Let us assume tEat we can

that our,order relation is dense. (Notice that

; search for.t dn such
\

always find sucll a U3 , so

this is really fl very big

assumption: ° not only does it.involve;the question or the absol4e accuracy of.
t-

the comparison procedure, but it implies that; if our domain haslet least two

length-different objects, then it has infinitely many. It foll6s.that'the

'order relation in D is also dense.

The next step is.to introduce an operation in D (which, hopefully, will

yield a derived operation in D) , which we will expect to map Into addition

under an appropriate measure function. We establish this operation W a

physical procedure of."joining", which we can think 6f as placing two rods:

iniline, "end-to-end". We,assume that this composite entity is an object of

our domain D . Denote the join operation by * . Then for. dl

1
, d e D '

d
1

* d
2

E Di; i.e D. is closed under the join operation. The empirical

procedure suggests that we should assume that this operation is associative:
e

and that it. has the property that di - , d2 d2 ==> al d2 -.di** (11

In other. words, the join operation leads to a correspQnding associative opera-

tion ('foi which we use the same symbol) on.equiy.plence classes. We examine.'

'next the oilltutatiyity,pf,the join operation. Clearly we would not regard

d
1

* d2 and d
2
* d

i
as the same rod, so we dd not find that _1 is commute-

.

itive on D . If.you think of 'the possible physical processes involved, you

will'. see, that there is a minor difficulty examining commutativity in D :

for
1

d
2

, it is unlikely that we can directly compare
1

* d
2.

with

d;2 di . Th±s seems to violate ceur ass.mptions. that (a) both -ef these.

a
elements belong to D; and (6) we have a length cdmparison,procedUre for

each pair of eleAents in D , This difficulty is 'not serials: we can:Overt-

come it,by assuNtng that we cnvW.wayslg,ind a third 4ement, d *,d

to compare with di* di , or-tra;suming that we .have"more th4n one "copy"

of each rod. Either way, let us assume that our empirical evidence is, con-

sistent with the assumption that * is commutative on D

I %.

93
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We look next at the relationship of the order r tion, and the join

operation'in D'; end assume that empirical evidence jus ifies the assumption
4 4 4

D .that, for a ,b c c .

< t if and only if'there exists b with a t, c = t ; :

(ii) a < t ===, a * c <,-t * "6 for all. '.6 c D .
,.. ,,

,,... t: -.
..,

In other words, we feel juStified, as a result of ourinvestigation,-in
1

Y

assuming that the. systed '(D ,*,,<) which we have.obtained by physical opera-
rr,

. . _
' tions, induction, and abstraction, is'a densely-ordered abelian semigr:Oup.

At this stage we might stop our empirical investigation, and consider
. .our objective: to establish, a length mea4 re function oh. D . Before doing f

thia'we have'to say a littlemore clearly what we require of such a funCtion.
p /

We define a length function to be a function ?. : D-4R which has the

properties AW
. d A

(i). X(d1) = X(d2) if and only i,f d1 - ; ..

(ii),,,if d
3:
='d

1
.1* d

2
, then ,X(d

3
) = x(d

1
) + N.(d

2
) .

The, first requirement ensures that X will induce a corresponding length func-

tion (for which we use the same symbol, X) on D . -The second "addfiVity

' condition iMplieS'that X 'must be "finitely additive`. gnd the eviler

assumptions which we have made ensure that % golitpreserve order, both as

'a 'mapping on D :and as a Mapping on . The systems ana.

(R ,+,<) are both ordered, abelian semigroups, and our definition of length
v

. .

<)
: .

function' implies that X : (D , *,.- <) -) (R
4

,+,<) must be an .isomorphism,,

but not necessarily onto. r
k ; :

.
. r, .

i
4

- - ,

.,

.' (

areValue Space 'and Range'for-Length Functions. .14e recall that there are

subsets of the positive reals which have the structure of-an -ordered_abelian
.

semigroup; in particular, 'the positive integers, J
+

, the positive rationale,
.

Q
+

, and the positive reals, R± it.e all ordered abelian semigrouPs,under

. addition. We therefore ask ourselves the following questions:,
..-..! e 4

4 . 4. .- '
1* ';s therdAby strUctU're-ueserving 1- mapping .(isomorphism) of 15 into

. ..

J4. , Q+ or R+ ?

2. If there-is such a'Mapping, is thereore than one? And if so, how are
. .they related? 7
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1

`We can quickly dispose of question
.

1 as far as .1+ .is concerned. The,
order relation in D , is, dense, 'Mille th t. in J+ is not. 'It, followS that, .

. there cannot be a 1-1 orde ;preserving map from D to J+ . (Intuitively., -

the reason 'for, thiS is that, `for any two elemehts of 53 , there are Infinitely
many elemerits'..between them; but their images in J+ would be positive integers,

1,

9' and thgre are only finitely many integers between each pair of integers.)
.

We.
.
recall that both Q+ and R+ have dense order 'relations, 6o iteither

is ruled out as a possible image space on account of' the denseness of the
s .

order in '15 .. But we shell have to do quite a it more work before we can
decide whether or no there'is any structure-preserving map From L. to eit

,
Q+ or R R. We set aside this questio; for the time being, merely "notin

P .
,that,'we -.411, in fact, be able to show the' ex!,stence of such a fun.ion As
far as 1,t..is.concerned, but that we shall not (because of questionS bf

,
saccuracy,,,' 'cath,oi4 procedure and definition) be able 0-decid,k empir ally '. ,1!

whethert R .s really needed, or,Whether Q ', or 'some of sabe of R+ ,
4,

measurement
,- 4 ''wille _Wheniihen we come to look at the question of.len&th-mea'Surement in

'
.

matheWical systems, we shal.1 see that * ,'Will 'npt suffice or the measure-4.. . ..-......__:._ : , ., '3,_,- .

measure-
went of length im the Q uclidtm pla,ne; but we/Shaf,1 also see ''hat, if we start
from '412t axioms of classical

I
tsyntheic /geomeili, then we cannot prove that RI

is needed. In fact, triere ar.e, geometric /which satisfy the classical axioms,
..... -:' .

atd ,i/hicp ado Sot require R for length easurement : , but more about that/ ./
. in #e net section., ,

,
,

- .
. . .

. - lielationsheipp,i3etween Length FunctiOns;' We turn now' to our second .
7 .f.. ., ,.... ,qiaestion; If -plere is a length function, ',N.', .

from
,

"(D ,;*,, <) to Oi
+ ,+,<) ,

\
arethere any others? And there'

..
are, how are they relat ed.? The first .

1, r 4 +

quRstion is easily answered: We have seen (Theorem 2-2-.2) 'that; any, positive
;.. / V _.. + ' / ,

. similarity transformation, x.ydn R }' is 'an automprphism of the ordered se
;

.group 0:t ,+,<) , and hence :(as you iiIsy easily show) the compOsite tfunction
Z.. , is also' an automorph f (i5 ,,,<) 'into. (R+,+,<) . That is, Ia.'' --

,
k, - *4

is also a suitable lengt, functIon. / If we denote' 1TX. by N.1 , then we-see

-=inutediat y that ?.
.

; :i .e . ; ,?%. is &he contsite. of N.1. with a posi-

troves silaritjr,.of,

90'

1 -

. In other, iords, there is`\a symmetry between N. and

h
.1 ' n, th, serise h.E;t each may be Obtained from. the other by composition

,, .
, .

4' wit ia. suitable positive similarity,..and. the.two_similkti'ities are inverse
I 4 °

c

..
e ements in' the posi-V.ve sitatuirity group. (As wShal°l sde in the next

, - k
ection, cif N. isnot onto,. then some .of these composite functions might.

. .
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exhibit such Unexpected behavior as failing to possess a'unit, but we Leave '

discusspn of this interesting question uAtil later.)

N.
It Is now natural to Isk whether all suitable length'functions (ifthere

are any) are related in this wa3>,1 by positive similarities. We cannot yet

answer this questioabsolltqly, but we can, give a conditional answer; if

there exists. at least one such function, X.,which is onto, X. -is axc
.

isomorphism of D 'Onto R
+

: note that this implies, in particular, that X

takes on arbitrarily large value, -- which is actually implied'by our assump-

tion that D is closed under (le join operation -- and arbitrarily-small

values) Ad if
-1

is another suitable function (not assumed onto) than it -

is easy to show that

ft . .
,

is an isomorphism of, ( ,+,,<). into itself. But it follows from Theorem
.. ,

2-2.2, th.ii. t the only 'such isomorphisms are the positive similarity,autoTi. . - ;.. -

morphisms. Hance X1 (and hence every oi414 admissible length function) is

also pnto, and'apy twoltuch functions, differ by a posjitive simillrity: i.e.,,

they are similar fUnction$. Th-other words, is.:ftgareg whinia.04cualy,
- ..,

..,

distinguishes any onKfunotion from the Sther; and, in the sense of Section ft

. ,1-7, "length" is a:pOAkt±lt*klmilarity-ihvariant'mesure, or tratioscale..

We now look at the lengthiurictions:themselves, with the .assumption that 1

they-are onto, 'aid he/ice similar... Dellige'the'set of all such functions by .

.. '7

A . Then, as in*Saction. ,_ we can define'gn Operation of `addition (+)

on unctiOns from B. to ri4-fltild we find that if Xi ,X.2 e A , then

"1
+X

2
,e A (i.e.; A is closed, under addition): Again, as%in Section 1-5 , *

, .'t has an order relation_ (.<L and (A ,+ ,<:). is an ordered abeiiari sethigroulo.:,
'

..i:1

The order relation in A is dense. Moreover it follows from the aisumption.L..
1 ,...%

that each X .isonto R
+

, that if we t4e any X.6 e -A then for each
. .

..

\ e A, there exists k such that i., = a
b

; and for each r e R , the ..'

.function f : A -4 R+ defined by .

I .

'

. 1E : \O--4r6-
_A.: ,--......

'1_, ,..,-....-.*:P
. ,

0 '
-"-

\ 4 t +
can be shown to be an isomorphism of (A, +, <) and kR ,+,4A.) . Notice that, -.

,...,,..... S, \ .1- , 0, Ar . 4".- ..... ..,. , , ,
I

t. . I.

since the choiCes',of ),,q and r
0

were arbItfariT this isomorphism can be
.' -

. - *...,___
-1...a.:

set up in infinitely ma ways. / .

//
.

1.0 0

.



There is also an o peration of multiplication in the set of -all functions

from D to R
+

, but it is easy tovverify that the subset A 'of-length.

functions is not closed under this multiplication: the product of two'lengtE

functionsis not a length lunation.

We return now to the question which we left unresolved: 'whether or not

there are any structure pre erving functions from D to R ; ice.,' whether

the set A. is empty or not. You've probably familiartwith procedures for

setting up'suitable length functions: -weishall dedcribe two of them. The

ftrst is the one usually used in elementary vrk, and the' second Is derived

from the procedure used by Eudoxus to develop a theory of ratios for segments.

o Vii: 1

1 Method I: Idngth unction in Terms of Selected Unit and Sub- whits.
0-

fcii.rst select, :quite arbitrarily, any rod d in D as a "unit"-
. 0

(Strictly, speskig, the unit is the equivalence class -of d0 .) Then-Tor any

8

tither rod A ; we compare d will successive "multiples" of do. until we

. reach a MultiPlehd (i.e., d' *\d * ... * d0 n terms. clearly .

0 0 o
; '

3A --,J, ) such that nd < d < n + 1)do where theesymbol < stands for
.

-., .

.

, ",leS 'than or equivalent to''. This requires that D be archimedean, a

property which we assume to have empirical justification., It also requires
. ,

thatwe haste an unlimited nUMber of rods which are equivalent (in'length) to
,*. ,

.

'd II:As convenient to simillify notation by using tte same notation d'
'

, ,foreach ef'thesa, in the notation hdo : strictly speaking we should move to
, .

-.4"

lquiValence cla'sses at this point.) Assume next that we are provded with
. .

- la. rods `dl , such that 10d1 - do . Adj:oin these to the composite rod nd0 ,

0 t-

(laid off alons.., 0 ,
and obtain-a positive ,integert n (0 < n < 2) sueh,that, 11 v- 1

i

Ad, * nidi < d < fido * (ni + 1)(11 - Assume next, that we are provided with
v

. : 10 rods d2 , uch that 10d2 - id. 5, and continue the procedure to obtain s...

r 1 2 ( r r 2 5 -

uch that nd
0

* : c i

1
*n2 d

2
< d < nd' *n1 d1 ,* (n

2
-I- 1)d

2
.n-1,

0

..

In ;this wad we can build up the decimal number r = n.nin2 ... and /4 e define ....

,' . , , N

,a function ' .4
'

* .

. . .

'

/
0

""1:2 -,R
-I-

, by, X 0(d) = r .

. ,

.

.

. ,.... / , . ' - 1.

/ .
.

dlearly,5 we did not, need to use submultiplies with 10 equivillent *part's; we
. : f .

could-5.-1'01T example, have used equivalent parts to obtain. the monLjArtegpr
0

. ).'

I part O, r 1.n binarY form.) ?
, ..

:
"., / 0,

V ' : V *. ,..;,,, : '4,.... 0

Y -- ..txe ,, --------,,,....s. ,.. --,,,.. .... "

. .

." 97
1

..- 191

1,

. A
e , . 4.
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Remmrk. Two things about this process. are Worth pointing out;
. I

,O
1. In the process, we compared the rod, d with the "iterated join" of

- d
0

- with identical copps of itself . In order to obtain the number,
..

n ,.and'thIrdigits ni , n2:, ..., we riefeded to. be able to Count.

That is, approached in this way:, the measurembntOflength depends on
, .

t hesimp er ability,, to measure numerosity.

://
2. In 'order to build, up the decimal number r = n.n_n

2

.

, we needed to

be able to "divide" the rod do, into 10 equivalent parts -d1.;.d1,.

into 10 equivalent parts d2 ; and so on.' As we Nave no assurance

ti-t the process' of matching will.ever terminate (i.e.; lead to.a

finite decimal expansion) thiA'imples thati;i the ProCess is to bef
'

carried out as outlined,'then we must be able -toy obtain "arbitrarily

small" rods. That is, for each positive integer m, we need to use

rods- d such that 10Pd - A fl 'Our knowledge pf physics suggestsm 0
.

that such rods cannot be obtained. that matter, ike
.

the
real line, is not "inifinitely:, divisible".)

We assume that ii. is a property f the,operations.used for determining

tequivalence, and for etermining theot'UnAion X
0 /

that X
0

induces a,

corresponding.function (for which we use the same symbol) on .15 . Tie now

0 examine thisfunction,_to 4ewhether.or not it has the properties we demand'
i 4

. .

of a length fDnctiori.^ If (as a result of..impirical evidence) we were to make
t ) ,A' ,,'

,

a number of addition assumptions concerning, or examplep the "algebra".of
.. -4

the,"mulelplication" 'nd then we could make some attempt at proving that .,

the ? emPirically-def lied', is an isomorphism of -(15 ,* -<) int -(114.,+,<) .,,, .e.
$

We shall have more to sak in thenext section-on the -corresponding question

which arises in connection with length measurement:in'geometri; but as far as
.-.. ..-4,

empirical length-measurement is concerned, whether or not To is an isomor- ) ' .

P'htsm is a question which can'only. be answered on an empirical basis, taking ",:
. '

into account not only the.eperimental evidence, but also the consequences of 0
.

...o. .!.: % -

the assumptions (hyp -Leses).suggested by the evidence. ,, 41;" 1

.
. ..1......\

'-Concerniig-the
i
question of.!.!ontOness")' we 4seye_tnat, unlbssl i has '

a terminating decimal (by'binary, if that is whit we telt used)° expansion,
. 1 3

even, the assuMption,ofex9c-Lmatcffing will not aliow'''us t actually find r ,
b.

..
.....

QPePaUge of tte infinite :e of..the process. Hence, even'if r 'is
e.4

rational, an assumed exact proCedure would- not necessarily'disclose this,
'..7.-

'

Moreovery.if we.admiteyeri the,smallest amount or inexactness day of-the_ ...........--.

. order of
.1.04100

f cm) the'n, sin ce
.
everyr' eal iit m Lel interN1 contains 0.

,-.

0

- 1.

.



o 0
10.4 ,N

infiriltely many rationals andk, infinitely man'Y irrationals, there is no
, f u

possibility of seriously, considering the questiOn of whether for some-d el
.

Nip(df must be irrational. In othel" words, there is no way ofdeciding vem.

i
:

we realempirically whether or not "peed" l (or at least more than rational)-
*

numlersfor length' measurement, and it is meaningless even to ask the question,,
, -.

`' unless. werdan find some way to way precisely we clean. by "heed".
,

\

0 .. t: N r
'

t

'Thelprocedure outlined above for establishing the existence Of a length
P

. k ',. , /
functsion, required an arbitrary choke oaf' "unit". Wa have defined the linit, %

. of a length funC'tiontC'pe the (unique if it exiStsraleMent of D whose
le_ , .

image is the number.- "1". . Thus ;f weCpesime that each length function is

onto R+ , then there is e. 1 1j: correspondence i',units and functions as des-
, . 6

,....,

, cribed above, and Vie set of dlkpossible units is clearly 'D itself. 'But
7..

,, . '7----1.

if each empirically-obtained function is not onto R
+.

, then some length!
..-

,,,

Afunctions will exist whjI nch do ot,have units 1 ana there fll not be a 1-,1 1
. \. , . .

correspondence of'.61,nite with the set of alklength functions. =
.

4 e .o1, . . '
;."(:-Pe;L, -

,
..:.

..,, ..7 <
, .r

Exercises 2.-4

4,

1. Assume that.thare.fflxists at leaSt'one length function X
Q

andprov'e

*
the aSsem41qn just made' that-for dny t D vetp* exists a4;ength

so

function such that 2s.a : a

2. AssUMe that eacherighfunction is onto R
+

, and prove that the 1-1

correspondence

.
r

C -

. 0
. ,

of D and A
.

, is order reIrsing.
. . .

.

.

:. 13. A is a'set with at, least, two elements; anil with a.dense order .relation-
,

Prove that t,
.

here cannot be a 1 -1 -order preserving map from -A* to
i

J
+

. .

t 8_
*4 '

4. Prove that for rc e -,S+ the .ftuiction k : A --4- A ,defined liy, .

r_..

k(X) = (k.) is an iutomorphism of (A 4-. <) ;`show aldb that 'f each
-.../_. /

X is assumed alto II
+

, then there are no otherautomorphisMs, and S:,
+

is isomorphic tothe automorPhis; group Of ( A, + ,<;) under the 1-1
_ . . .

5;7

correspondence k H k
4

99,
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*

4.
. . . . , 4:

. ,

:0" .
,

.

.- .

,
.P

/ If
A
-each length Ainction is assumed to be onto Ri',., then it :follows.' . 1

, . ,t

.,Ii..,.

trivially that the. number' ""1" tis contained in. the range of eachlength .

function; i.e.,, eacE length furicZion ,has a unit. Conve gely, if we assume.J i .. .
* that each length functionchas a unit, -Chen it is not h d to show that each

.
.... onto- - +

length fuhction is R . Fpr if r is any pbsiti e real number, 'and if

'X : is any length functiSn," -then 1 X 1. ale8,a length function; and if al is

,

.. . ' . .:.
r ,..t -...., .

is.' 1.\ ^. , ".. .'Che assumed. unit of --),c, we have (--X)(di) = I ,, so that X01) = r . Hence'
, . . r.,. .. r

2,. eyexy positiire real number is in the range of X.,, and X is onto R
4-

. We
-.. .

', rtcordV'vlis siMple but ,irtinortSnt result as a *theorpth.
- -.. .

A .4.

,

,

. Theorem 2-4'.1 Each length function is onto ,R+ if and only if every length

'*-)functiori has a utrit. 4

.

.

I: ,,,..i . '-0 .- ,
.Ratios and Ratio puerations: In the ,following discussion' we.assume that

. 41-

each length function ,,i.. Onto ,,,n , so that each length function has a tnit.
1

If 'you worked the second' exercise' above, ypuprobablY discovered that if 'al /
..

i

d B. ; and _if .2. '->i a.i.e' length functions. for which -al ' d
2

are2 1 ' 2
. . - . .

tnits.(i.a.; X rd.) = X CCI ) =1) then ),
1

(a
2

) - 1 _.. -. (This follows1 1 ,, 2

t . .

(X2 (a1 ))

- .

. sitaplz from the
,

fact that if )1(a2) ...: k , then ?.1...= 17x2 , and hence

T , , ,%.2. = x . ) .. Thi4 suggeSts that not only is the 1-j. correspondence of Dine-
.

tibns and units order-reversbg, but that; in some sense, there is qt 'reciprdcal

'reratfonship iriVoll}eq.; i.e.; that there should be some sort of "ratio", of
4

units, A, : d2 , and a "ratio" of functions,' l X2 , such that
.

a .
2 . 1

We 'Could consider that the described process ftr assigning a. "length"

'to a 'rod d , using the rod do as unit, established a "ratl.o" do .

(i.e., that d do =-%0(d)) and that, because of the arbitrariness' of ,the...

Choice of d the measurement procedure actually gavd_a means of determining
0 0

,

a ,ratio (i.e.; a real number) al : 12 , for each ordered pair of rods

(d7 ch.) . Ihet us assume (on the basis of empirical evidence) that this ratio
e

is the'same for equivalent pairs of rods,., so thdt we obtain an (empirical)

fUnCtion

p D X D -v R
..

Dad

104 .
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. defined bi'
,

t . 4

I

4

I
4

.

Ns.
42. ' -

,2c) o di : d2,

. . ..,

. If we continue to assume that each length function is onto R
+

,.we can
.

show the well-known relationship betweeri these ratios and the ,similarity'
. ,

factors which relate -ale corresponding lengt4 functions;

Theorem 2:4.2. If each length function is assumed to be onto R and if
.

,
.

% . . ,
...

X
'

X the, functions whoge units are
1

and d
2

, res-
-a-

are
. ,

pectively, then. X., = (d,..42)X1 . ', .' ' . 1

'

Proof. rfim the assumptions made, each two length functions are similar.
.

Hence there exists k e P , such that X2 = k1 . Hence X
2
(d
1

) = kX (d ) =i..
1

But (by.the definition of 'di :, d2) , X2(d1) = di : d
2

. Hence

X, = (di ! d2)X1 ,avequired.
.

Remarks: ',.

,v

. . .

.. . .

-1. If di = "inch",, and d, = "foot"; Thieis simply the well-knownd2
..

relationship
.

-

,11 1 .""

1 -

1 /

foot- 1') :
. '106.

. - X '= .--- X .

.

2 inch

Or-, in yords,1"length in fept equals one twelfth fengtli in inches".

. ,

If X2= k%1 , it is reasonable to define the ratio of X2 .to Xi to

be the real number k . We write this in the usual way, as X2 ': Xi .
.... '

It then follows from the theorem that X2 : Xi = 51 1 d2 .

.

.3. It is easy to seethat, since all length functions are similar, the

ratios of length functions satisfy the relationship:
. ,

(x3 2)(x2
: x1)

Hence,'if di d2 , d3d, are ihe,corresponding units, we have

0 : a 1 . .... Ca .4
2 a3)( al a

2
)

1
13 ) ,,

- . - ".N. Z.
: 'a )which welrewrite in the more.usual order: (di : d2)F12 : d3)

101 ,

0 5. '
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If we use the common rotation

highly sugiestive form

dl
=' for
a
2

'.
.,

a : d2 , this property takes the

Cat/ d3 a

a:

but we must not assume that thj.g result holds'because of numerical

cancellatioh":
. . ,

the units d are not numbers, even though the/r ratitos

are.

/
k*

In general,, whenever we have a set A , and a binary operation on A ,
4,

,

with values in R '-(i.e.,4 function p : A x A -4R
+

) which, folo all 7;
1 '

A o .
, .a2 , a' in A , has the ",cancellation" property that, ,

P(a
I,
,a

2
)0(a

2'
a
3
). P(a

l'
a
3

,) then p is Called a ratiofunction, or a
=
4

atio operation on ..A , with values in R+1,1!, ;t follows that, if we assume that

the described procedure fox' setting up length functions on D leads to length

functions which are onto, R+ ,,then theibrresponding function

defined by

P x R+ ,

P(a. a, = N.2(di)

is a ratio operation. Weqallsee later that there.is a natural correspon-

dance of ratio operations and ratio scales.

Tn many treatments of length,measurement it is assumed that, in additid4

an equivalence, relation, a- related order relation; and arelated
7

or "addition" operation, there is a related ratio operation, and an empirical
. .. ..

.process for measuring the values of this,ratio operation. Among the properties

which are generally assumed (iaductive],y) for this ratio operation

. -

'are

Ie di

p' : D. x D R+
- '

dL , 'then p(di;d2) = p(di,d1)

n&k,
' (ii) If d1 < d2 , then, for every

(iii)

(iv)

t

0
d p(d d ) < ptd.

0
)l' 0 ,, ,

i)(di,d2)0(d2,d3) = P(di,d3)

p(d1* d2
, d0) = p(di,do) + p(d

2'
d
0 )."

102'
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t
,

- It general, a ratio operation which has a pt:TTerty lill (iv), with respect to

a commutative, associate, binary domain operation like the "join", is\called

an additive ratio operation. We shall see later that everi.ratio operation

determines-an equivalencg relation on its domain, and .an operation of."addi-
,

tion" on equivalence classes, such that the given ratio operation is additive

with respeCt td the defined "addition". However, in measurement, situations

there is usually a prior operation (like the join) and we seek a ratio opera

tion which.is additive with resloect to t,his:

4.
If the existence of such a re-4o operation for length is assumed, then

. _

it is easy tg use the ratio operation to.establish length functions. We dhall

see how this 3,5 done in the discussion below of analternate (tbeoretical)

procedure for establishing empirical length functions: a procedure which

corresponds closely to the classical device used by Eudoicus to overcome the

diffieulties esulting from an inadequate number system and the consequent

absence of a satisfactory theory of length. 45,=

0
The concept of "ratio"is.fundamental.in a large part of physical measure-

ment, and most of,us have a strongly developed intuitive feeli,ng for its basic

property, the'cancellation property, which we usually use so naturally that
4

we are scarcely conscious that we, are makinguse of'it. (E.g., from "A is

twice as long as B , and B is three times as long as C"', we draw the

conclusion "A is'iix tISP'as long as C" without arty thought of the assumed

(empirical) properties of tat-ios (or, equivalently, of length functions) from'

which the conclusion may be drawn.)

You may have observed that we have defined the term "rat io operation",

but we have not yet defined "ratio". Xs ,far as we are concerned;' the two

ideas go together: whenever we have'a set A and a ritio operation
F

p : A'x A ->R , t114n 0(a a ) is" calked the "iat40 of a
1

to. a
2

(with

-revect to p) . If -p is the "length ratio"rfunCtion, we might express
. .

this as "the ratio of the le ngth 'of al to the length of a2": . A ratio
al

gai,a2) may b,e written symbdlically as '0, : a2 , o5 by ,;,but,. except
4, a2

in the s,ecial case that al a2 are themselves numbers, this id not',
2-

ordinary division; "ratio" is just a binary operation p roma. s A to

the pOsitiva reals,.which satisfies the cancell6tion property: t!),- ' '1

1 3(8
1
et
2
)0(a a

3
) = ,a . This operation,,like number division, Ia'non-,,:

associative and non-copmutative. You trill recall that numberdivisioris

usually regarded as a secondai.y operation, defined in the.well-known way in

terms ormultiplication. (I.e., for a # 0 , wg define' 12- to be the unique
a

L03

1 0 7



c such tAat ac = b .) Weshall sec laterLthat there is a "multiplicati*"
.

'which is similarly related to every ratio operation: a so-called "scalar

multipliCation" by positive real numbers; but there is not generally any

suggeStion that this "scab multiplication" is a more fundamental concept'
,. .

thanThratiorn connection with measurement questions.
. % .

. .....-

We shall explore the relationship of ratio operations,*.ratio Acales, and

scalar multiplication more fully in the next section..

Method. II: Length Function in Terms of Ratios and.a Selectecl. Unit.

Let us imagine that we are back at the point where we have established

- --the length-structure of (D ,- * ,<) as a densely-ordered abelian semigroup,

and that we are interested in comparing the 'ratios (a still undegined term

in this paragraph) 'of ordered pairs of rods. In other words, for d1 , d2

d3 d4 c D , wewant td establish eriterion for determining a relation,

a , on Dc D , which extends our intuitive idea that when 'd1 is an.iptegral

2
"multiple" of /d. , and d

3
is the same integral' multiple" of d4 , then

t
d
2
) a (d

3
,d

4C,

'(The word "multiple" above, is used as before? in the sense of repeated joining:

i.e.,
.

fOr a positive
)

integer, nd = d * d 41-'d (n. terms).)
I

4ven Tods d1 , 'd

2 '
d
3

and cl4 , we assume that the corresponding

eqUiyalence classes each havean unlimited number of elements, so that we can

cofflicare arbitrary (integral) Multiples of any rod, with arbitrary (integral)

multiplesof aay.other: If we'discovei. that, for positive integers in n
.

--
md1 ...nd2 and md ndj .:,

3
.

. .

/then we defige "'

'/

Ao

(ci
'
a ) a (c2;',a )

.

,I, PT

,.) 4 Ao
. .1 . ) l 2

m,

It J.. aSsumed,that this empirically established relation leads to a

carrespoWding relatioi in 5 x B , and that this relatioh is symketric,

' reflexive, and' transd.tivq; i.e., ,it'is an equivalence relation. However, iii.
.

t ,
is possible that, fOr given (d1,d2) , therd is no pair of ,positiveintegers

'

r
m , it , such that m# nd ;"and, intuitively,,Mdoes not seem Aat,isi'actOry

. .

1 2
N

-that-every such pairlhould be regarded asq.nequiyalent under a' ; i.e., that

every suth tail.bhoUld'cOntitiate an' equivalence class with 'a single glement.

(For example;if (d 1'' d
2

) is such a pair, then, in the Pair

0d 104

.
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1.

ould

"incommensurable"

to extend the defy,

/

-, if,
-

e equivalent to ,(d d) .) Greeks found, such
l' 2'

i s in their geometry, and Eudoxus' brilliant'idea,was

2-14

ition of equivalent ratios by defining.

(c13,d4).
4.

ty b # ,,t

only if' mid < nd2 wheneyer md3.<nd . [You shOUId verify. that
' .

. ,

',..really..is an extension of the relation 'oc .J We assume that this leads
, .. .

'14, 0,4.,
_

(emPinicaliy) tta corresponding equivalence relation on D x D . Observe 4
.....

that, as with the earlier procedure, we can never discover empirically whether,

'or-not DL,doxUs' idea is actually netded for a theory for, physical measurement:

as long as we admit tha4,15144e comparison procedUre
.
is necessarily imperfect,. .:.

then; for any di ,d2 , there ill alwdys be poSitive integers' m , n , such

mdi# appears to be eqttivalqnt to ,nd. ..
, 2 ""

At'this:stage, in addition to the empirical.structNe of (D ,* as

a densely-ordered archimedean, abelian semigroup, we have an "equivalent- ratio "'

structure on iix,15 . The corresponding geometrical structure wat quite

sufficient for the purposes of,classical gepmetry,.bUt if we want to obtain

real-number-yalued length functions, we must go a step further. We observe

that the procedure for setting up the equivalent-ratio relation leads directly

to a function p from !) x D to R a 'unctiot which, in effect, gives a

:positive real value to each ratio. This is defined as follows:

If, for d1 , d2 e D o and for some- m ,

b. md. nd

n
. . .

thenwe define : (d ,d ) ..--) . More generally, any ; d , ye-define
. 1 2' m , 1 2 .i :-
p : (d

l'
d
2

) ,7; r
/ t

Where r is the real .inOber-detrmined by the -cut
.;

(L nd2 <
s I

is empiri ar

(In order that this set be a cut, we are assuming that D
f 6
imedean: ie., for any d

1
' d2 , there exists an inters

p , such that', pd. > d
L.
) We use the same symtol, p

t,
to dereZ:thegesSlting

..' ,

;unction on B x .,
.

.01We assumd_t

witil,pheinpirli
T:X - '

`: 0(

. ,

t the following prpPerties aL the function
),

p are cOns-latent

evidence:,

, d3). +13(d2d3) , for all di , c12 , d3 .

)0(d2;p3) = , fdr all

105
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In other words, p is an additive ratio operation. As udual,,we also write
--_::-.-...,,......_

d

P (d
1
,d
2

) as a ''formal fraction", .--.. , and as 'd1,*: d'2 .

4, 2
d'''

.
_ .

From'this point, it

length function. So far

of D so again we make

unction
_

by

is tnly a short step to the description ;ofaisUitaple

there is nothing to distinguish any particula!r element

an arbitrary choice of some *a
0

e D , and define a

0
D R .

X0(g) (3(71 :jai) = a : a0

for each d e D .

The Verification that
0

is a suitable length function is a direct

consequence of the many assumptions' which we have made, and'which.(we-have

suggested) are consistent with empirical evidence. We'note that the seleCted
..,,.

v comparison class do is the unit which corresponds to Xo , as we,would.

exact from a comparison ofthe above procedure with that ofMethod I.
. 'ilk ,1

It is interesting to co are theiwo procedures which we have'outlined

-for the empirical determinat n of a le -me surement -function. From a
.

practical point of view, one e procedures requires the existence of
,.

.
I .

an unlimited number of "copies of a sele2ted unit rod, and the existence . .

(or "construction") of suitable "fractional parts" of the selected unit rod; .

. ,

theother,procedure requires that we have an unlimited supply o " copies" of _t
% -1, , -

every rod. The first method is closer to the actual Procedure used,in length-

measurement'with a rulei- (or weighing with a lelance).%either procedure can

enable us to resolve the question'of whether or not"ratimmal numbefsvare sill"

, ,

...

ficient for empirical mikasurement.(Or whether suc ; question is meaningful.),.
... , ..

,...
- In practice, of courbeL.we iusu:ally'use only rational numbers as.values.of

' .

empirical measure functions.
.

t
,

..-

Lengtki-functions, UnitsAand .Values. e return now .tcHp di6qussion of
, ,..0.

the riela,tionship between length functions, units, and values.' We assume that

each length function ma--(i5, *,) isomorphicallY onto, 037.+,4.,<) , and note
,

.

that the following" properties appear to be consistent with the empirical

evidence:
.

O

1.
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If X 4-H.a , ,

1 2

functioLs and units, then

k a
2

X(a
2

)

for every: X
d
1

X(al) ,-

(5
),= 2

(a
2

)

3
(a

3
) = 1 .

1.4

2 - 4

under the 1-1 correspondence of

(iii) (a ) 1

(x2(ai.))-

(iv)
1
(a

3 1
(a

2
) x2(a3) .

(Of course these properties are not all independent: see exercises below.)

V

.
. , .

, - . .

Exercises 2-4 1 (continued), ' ' 1 ' ' 1 I

(Assume, where necessary, that each length function maps .(5, * ,<;) '

-isomorphicallionto (R+,+,<.) .).
-A ,

5. terify the above properties (i) -- (iv).
. e

s,
. ,

6. Using od1 es a unit, the lengthi.Of .d2 , d3,. are 7.6 and 9.5
. .--.

respectively: What is the length of 0 -if d is uaed as a unitt?
3 2 4 .

, If the length of 'd4 with N3 as a unit is ./2.8 , what is the (length)
A ,

iatid of d
4

and d
1

? 0 z

t .

7. When d1 is used as a unit, the length of d .is 7 . When di'is.
1

.
used as unit, the length of d.,ie, 11 . What is the, length of. 4 J7dAn: ,,,,, --'

- ,

. * i. . '-'":

I d * d is used as a unit? -. , ..-)-
_

1 2 .... T.--

. , .-, ',,

' 8. Show that ,if d1 ., d2 , ... , do is a finite sequence_of rods,-... whose`

'lengths are in aritImistic prog4esiion when any ro' d
0

is used a0C,.
.... ,i,/,

. . ,.. - ', . .

;Ludt, then the lengths axe alto in arithmetic ptogrespion when-any4other
,I,

*unit is used. ' ./

(Note: In,view of the result of ENercise 8, we say that'esequahce'ot,rods

fs in arithmetic progression whenever their values (under. any length.functionl;

.areirlarithmeticprogression.A We *serve'that such a statement is unit-free:.

it does not depend on the choice oflunits.)

ti
0

4,1



, 9. Show that if di , d2 , ..; , do is a sequence of rods whose yalues are

in harmonic piogression under'any length functron, thato(they are in

harvic pqgression under any other lengA function.; (We say that-such

a sequence of rods is in harmonic progression; this is also la unit-free

sAtement.)

. that if a sequence of lengths functions , X,2 , %n has the

property tht, for some particular d E D ,
1
(d) ,

2
(d)

n
(d)

are in arithmetic prdgression (her:cynic progression), then the same isc

true for the values on every other rod in D . (Such a sequence of

functiOns is aaid .to be in arithmetic progression (harmonic progression);

we could have defined these terms directly, using the structure in 'A .)

,

11. Let .) =.(di ,d2 , ...,dn) beO a sequence of,rods, and let

(X..) `l ,X.n)- be the corresponding length functions. Prove
Vat (di) is an arithmetic progression if and only if (xi) i8 a

harmonic progression; and that (di) is a harmoniC progression if and onl1f

if'(?.).is an arithmetic progression. Hence show that (under the 1-1

correspondence oe uni.ts and ,functions) the arithmetic mean of, two units

corresponds to the harmonic mean of the related length function (which
. ,,giVes the harmonic mean of the values, on each element of the domain),.

and that the,harmonie mean of two units carresponda.to the arithmetic

meanof the related functions., (Cf. Exercise 7 above.)

4. In the context of classical euclidean geometry,devise constructions f r

finding the arithmetic mean and the,,harmonic mean of oline segments.
.;r

13. If S : AxA-4 R is any ratio operation, prove tha

._ ,,, -,_ ... ( a) k _fgr,. all,AiL e,,, ,,,c A'
i , ...:,.._..,.

.. , , -

es

'

(b) for all a c A , :. 4 :

AP

4
P(a,a) = 1 .

1 9
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rat

0

//
2 - 4

h fUnction which harp a inlit,/and if 0::.1Y.x_D
+

ration l'or length, pro eithst, for any cl d2v e D ,

other woes, t

rat'o of the n ber

If ,ength functions

tha each'lentt fun

true for such a func

perty thatll 1

shall,see that t

of classic41 geo

tit onto'R4.--.

.15.4 If G denotes the get of all

"scalar multiplication" of elements

d )11

0,(di,d2)
//LAk.t2,

A

"length ...rat o" of ,d
1

to d is the same as- th*
2 . .

X(d1) apd 7.,.(dz) ; for every X Whichlhas a unit."
-

re not assumed to be onto R
+

, it is not necessary_

tion sh6.11d have a unit. The above resat is still 2' .

, .

on, but in order to prove it we must use the pro-t-
,

ngtiLfUnctions are similar. In the next section we

its property can be proved as a consequence of the elk

e:EFwithout assuming that each length function is

functions from a set A to .R
+

there

of G, by pbsitive real numberp,

as defined in Section 1-5. In terms of this multiplication, we define a
. -

function

o

1

op : G X G -4G

to bk homogeneous of degree a , if there exists- a e R , such that,.

(1)(kZ1'4R) kag(81'g2)
1-

for every k',.and evely. (g1,g2) eGxG. Let. .T -IrafUnction
.:

Z. A

which' cs8libtained:.fiton, finite numbernof the Operations (in G) of

addition, multiplication, scalar multiiifitetibb; positive real-nuMbers
and

the formation of poyers. Then deterkines-a orresponding"

U:nction

/

/ ? o At 1*.

,-- + -:" +

/ P
, .'

, .

. . ,

such that [Plg q-)](a) = cp (g (a),g (a)) , for
/. .,.. .

1'--e 1 1 2

all -a e A . Prove thht 9 iqomoteneous-of

i hOmogeneous of degree' a .

?

109' a
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F
16. With the same notation as Eiercse 15, let A be t e domain of length

flinctionb-and le4t G) be the subset' of all 1 pgth functions. Let

.m: G x G -,G be a homogeneous. function of deg 1 , 'formed as in

Exercise 15. Prove that if f
1

f
2

e F ,the T(fl,f2) e F That
'

is, every such homogeneous funqiqn(2fdegr

is also:alength function. In particular,

\functions, th'41 soare the Functions
1

that a ;corresponding result holds for ev

Remarks:

The results of Exercises 8 -.11 and

measure functions whose doltains

whose ranges are. R
+
., and which

time intervals, mats, etc.)

-1) mf two length functions

f
1

and X
2

are length

2
and 42.1 + . [Wg remark

ry ratio scale.]

Jr.

4 above carry over to othen sets of

densely=ordered abelian semigroups,
,

a e similarity invariAnt.. (E.g., area,

.Perhaps youhave observed, the si ilarity of the formulas (ii) - Civ)

above,relating(lengtlrfunction , units, and values, tp the formulas

which relate logarithmic functi na, bases, and values; and also to the

rules for differentiation'in e loulua. For example, compare (iv) with

.
.the formula,

. # logacii i logioc..logab, ,

.

.

and with.,the ch'ain rule for the derivative of a composite function.

(With a suitable choice of notation we could make .correspondina.

fornulas identical.) Youinight find_, it interesting to look for the
i a .-

Underlying reasons for this similarity.
1

,-, .

',..

4s

K.

The fans that

Uld,...elength function is

1

fully determined when -a value isvassigne4,to

Y-. eint'-dt,*te_clomain;.,(i.e., there is exactly one leligth-4r', a
function which en y44q0n,q,gIven domain e1 epent);4.,_

,,.' -,',-.

(ii) any two length fun6tions differ by compositionZith4poSiIpe
4 40:'' '1similarity transformation;

pre'of very great practical importance. In particular, they 1Mp1Y that a

function for lengtA measurement can be completely established. on the basis of

a selected measure for one object (usually the unit, wi.1h measyre' 1) ; and

As 110
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z
that, in order to convert from one system teallotber.,,we only need to know

the length of a single object in both Systems: it is not necessary to com-

pare units directly.

--Use of the Term "Scale" This, word is used in a. variety of ways in

.

relationship, to measurement questions, and it would probablw be hopeless to

atVmpt`to fixtibri a single meaning. Por example, "ratio scale", as used by

-Stevens for the classification of measure functions, refers to an equivalence
...,-.-

,class of similar funttions, snob as our class A of length functions., The

Zword "scat J' is also used 4pr each function in such an equivalence class:
Je

,.' . )

e.g.,!the metrWscale of ,Xength. It is also used to denote 4n object, or

machine, emplo4ef for obtatning values (i.e., "generating" the funion) on

j't some (usually restricted) .part

.

R
of the domain: e.g., a scale used for weighing.

t..= .

Apathex -related use is in such expresiOns as "scale model" and "the scale of

' a map": we shall have more to say la er about some Of these ilet.---
. '

More About Language. Let us look at the way in which a word like "inch",

is used. From our point of view; "inch" may, be regarded either as the name

for a Unit, (i.e., the -name of a particular equivalence class of rods) Dr 4S .

/ 4

the name for the cOi'respdhding function: if we assume that there is a 1-1

correspondence of unit and functions, then the choice may be regarded.as

immaterial. To confor

. of the unit,) and' refer

or X. . Similarly le

function, etc. With' Ii

i'elating to length`mei

language:

to genelil usage we should regard "inch" as the name

o the. corresponding function as "the inch function"
.

ft
' denote the foot function, X the'meter

s convention we list together, a few common expresiOns

rement, and the corresponding expressions in functional

Common Usage:'. In Functional Language__,4

(t This box is ches rong;

or, the length
F

f shis box is

4
,

inches:

(ii) The Sum dfitthe leng hs of box

and box.B i 7 inches.

, 4
'X
in

(this box) = 40

, Xin(A) + Xin(B).,'= 7

(iii) Length of A 7 4nches.
in (A) = 7 '-

J
I -

111
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P

(iv) L' =

12'inches = 1 foot.

5'

The length of A is 9ft 7' in:

,(vii) .2'ft > 23 in. .

.

`'

= 7 , (Thecommon abbrevia-1

Lion is meaninglesg unless there

is an.imPliedunit,;:b-rana an

iliplieeobject, X .)'

, xincA) ... 12%) if and only if

--'
Aft (A,' = 3, ; or Ain

ft
= la =

or.fpotO.pch = 12'.`

A =A1 * A2 2 and .Xit(.1) ='9 ,

Ain(A2) = 7 ; or) Aft(A) = 9.7
.

(base 12) ; or, Ts

Xi
.

n(
A) = 12X (A),

s$,

ft

= 97 (base

'7= 115 (base

ff
t
(A) = 2 andf.

We observe that theommon.usagq f6

meaning in terms-eCtillaaiar mgltipli

ments' (such as "inch", "foot") in Y5.

ti

12)

10)

)

23

hen B. < A (wher- is the

etr reta in D).

and (vii) has a perfectly clear

ation".(by positive integers) of.ele-
ter.

This seems an appropriate place to a

otgiven tab the expression "the length of A",

main 14' those'objects which are length measurab

the length to be the equivalence

This enablis us to make all sorts of
6

of objects in terms of the structure in
k

partictl4r units or length functions.

whether or, not any meaning can be-

ere A is an object in the do-
, ,

.t We cart do thi's most simply

by the technical device of, defining

clasS.(in 15) to which A belongs

meaningful statements about' lengths

without referene to any

With this meaning, we can interpret a statement such as,"the length of A is

7 feet" as equiValent to "7 foot'is theequivalence class in: 15 to which A

belongs''. We can also give a clear meaning to a statement such as "A is

longer than B", without reference to VUnctions or units: "A longer that B":

meansiiiMIAly that A >t in terms oti the order reltion'established in 15 .

Unit-free Statements. Many of the statements which we can make about

length; aretrue no d'atter which particular'length function (or,unit) we use.

Such statements Are often called Unit-free or invariant statements about

length. We have already seen examples of these in the exercises. above. (E.g.,.

lengths of rods being in arithmetic progression.) Some further examples of

unit-free statements are:

112
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-ci) Jack is as tall as 4-phri;

%

(Ii) Jack is taller-than Jill;'

(iii) Bill is half as tall as his father;

(iv) this stick is as longsas thd8e two sticks combined;
_

)

(v),-the length of A is the average of the lengths of) Be; C,

and 'D ; I

(vi) the perimeter of a square.is *our times the lengthof-a side;

(vii) the ratio of the lengths of those. poles is the same e' the,

ratio ofthe lengths of their shadows;

he ratio of 't,he length of this pole to the length of its shadow)

is greater.st noonthan it is at 4p.m. v.
.

All of thesve'statements have clear meanings in terms of t he structure in
#

; the,'finAlStep,to the,definiiiOn Of aCtuel-Megstre functions on 6 , is

not needed inorder,to give meaning to ;these statements.. .40

The Domain of A . The whole descriptiok,of length measurement in this

section has been based on rather vaguely suggested emilricaJ. operations on a

'certain set of real objects, 'It is cleaOthatthe domain to which Che sug-

gested pro educes could be applied, is "itoo small';., and that othdt operations

Must be sed.if length measurement is to be possible in s1tuations where the

p.Lmi ve procedures described cannot be used. What we seek-, to do is to
0 ,

"extend the domain"2 by'using procedures which are applicable to an arged
.2

domain which lead, if possible, to a*dorresponding structure heldpmAi-
. .

(i.e. a denselyeordered, abelian, archimedean semigroup); and which "agree"
. .

with our ed4ier procedured where both ar,e'applicable. You will ?inddis-

cussion of some aspects'of this question in [2] ,sand in Chapterfl ofi
! '

It is worth noting that, in extending the domainI we wish to incluat objects

which no longer correspond to ':linear" ,situationS, hit which are "curved".
t ,z- t.

This idea will come up again in the next section, where yollyill see that -

questions of domain, and extension of the dozain, are alsO important in "mathe-'
) .:4. . . .

mAtical" measurement; i.e.',' in the discussion of defined measure functions

'(length,, area, Ac.)- in formal mathematical systems.
. . , ,

,

"-,

Of course, the mathematidal And physical ideas cannot really be separated
-.,

....,,.

except at a,most rudimentary level.:,Many,propedmtes_for extending the empirical
k

, domain involve the u of mathematical thebries (e.g;; trigonoietry). Moreover,
_

'a suggested the preface, lengths of real objectrack.pften arrived at by . _ _,_

: '
.

- 113-:--:":'
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Sks.

the use of "models"; I...el, by first "mappi.rig" .the object intta suitable

mathematical sistem,.and thenaNriving at the length by a combination of-

empirical and mathematical tataa'ses. Fdr example', the circumference of a

wheel is'commonly "measured",* measuring,thg_length of its diameter, mapping
t-

wheel'into a circle whose diameter has the sgMe length as

that Of tfie wheel, and then calculating the ienth of the _circumference of the

using the theory of mathematical length-measurement. The justifica-

tion rot 'this procedure lies in the/fact that it leads to results" whiCh agree-

(within the accuracy of the empirical processes involved) with the result

which would be obtained by direct physical measurement.

Situations dealing, wit,h*"modei-building" often involve assumptions which

can be conveniently indideAd'by the useof commutative diagrams. For example,

in the simplelsituation of the wheel, we are led to a diagram like that below:
4

4

e

D'

J

C

e

e,

+ .

m R
+ 1

a

B denotes the.set of wheel diameters; W the set of wheels, and i the

natural map of a diameter tothe corresponding wheel. D denotes e set of

plane fine segments, , C the, corresponding circles (for which th

are diameters) in the plane) and j the natural map of a segment to the c le'

,with that segment as, diameter. Commutativity in the ieittecianile is -a simPie

.consequence of assumptions concerning the nature of the model mapping u .
00.

,domputativity in the right rectangle is a consequedte of a mathematical result

Onddrhing'the relationship of the length measures of a circle and any of its

ametera. (This result is valid no matter which partiCular mathema4cgl.

length de6siire hindtiOn
m 'wechoose.)

e
deriotes an empirical length

function on a, domain which includes B and W

11- 4 '

.1L
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. .
. ,

. v.
The empiri.cal.hypothesis, which justifies the usual method for finding

the circumference of the wheel "(i.e., select a unit, measure the diameter,

and multiply this number by 7) ,,is theifollowing: .X '

PIt 1., ; ...
'I ? ' NN

' v
SR I' If N.'e and ).m are chosen so that the top "triangle" is

NNN

..
.

commutatiye (i.e., so that under u , the unit fOr N.

4o. .

'maps into the unit for N.

t
) , then'the bottom triangle ds

.

also commutative. , .

'

With this- hypothesis, it is readily verified that the whole diagram is

now commutative, and hence we obtain the usual "formula":

e
(w)

e
(b) , where i(b) = w .

. a

This is just a very specialcase of a general situation concerning the

use of' meithe*tical modtls: frequently assumpltions (hypothees) concerning

the validity of amodel, can be stated as "commutativity" conditionsconcern-

ing mathematical and.pmpirical relations and functions. The connecting,,func-
, ,

.tions between the "empirical world" a/id the "mathematical world" areuqually

measure functions. It'is not generally possible to prove the..validity of the
.

model, check all cOmmutativi-ty.properties becauseof the complexity of,

4he domains of' the, functions and relations involved. But to prove the inva-

. lidity of the model, it is only/necessary to find a single case where commuta-

tivity fails. Thid is what isefrequently happeningwheb some experiMent is.

devised to test the validity of a certain Ilypothesis'involving the use of

mathematical models: commutativity is being checked for a single domain

element,'with respect to two different "function paths".,

.

and Comparisbn: We'conclude this section with a comment on a

frequently,fieard statement

(i) "We can only compare like things.",

....

which has some relktionship V the subject of measurement. This statement
3,-,....>)j,,,, 0

;. `'.:- >-,..\ ,...."... ,..! , C,..0 )..

. is often uS=.ihoorrectly, to,support the claim that, for example, it doesn't '

make sense to main, Stitiment.suchas , .

0

(ii) The ratio of the numberonce§ in thidoboX to the number of

. .
..

,'. -,), , .-,..:--.:--
, cars in -the pIikIng-TOT" is ''`12 .'3') .'"'

,, : , :
1

li.

From our, point of view,.the only reasonable meaning to be given to
r

.
statement (f.) is that, when used to compare objects, it is equivalent to

.

something like:
1. , ;

lr "2'

. .

115
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Oligkon,aleastrabl'eattribUte; i.e:,'ofbjecte which belong ta)the

domain of some Commlon measure function,"
, 4 fir V Y 1

We may theg compare them (with respect to the attribute which the func-___

tioh measuresirInSeAli3Of.the "ratio. structure" of the domain, or by com-
.

paring their functional values in 11 Observethat. if-the measure function
.

is similarity,invariant (e.g., length), then
1

it does hol matter whidh of the.

2-5

(iii) "We can only 'meaningfully compare objects in terms of some

equivalent measure functions we choose ifwe arp only interested in the ratio
.

of the values.

With the meaning that we have given ctp statement (1), statement (ii) is

meaningful: the attribute in question is numerpsity. But a statement such

as "the legth tf.this box is greater than the weight of thi6 box" is not

meaningful: the bqx is first referred,to as,determining an element of the

domain of a length function, ,whi/e in the second reference the box determines
. $

an element of the domain'Of a weight funCtianj and these domains must be
,

considered aS disjoint, in spite of the fact,that the same material object
,

[determines an element of each.

On the other.hand,.a statement like "the weight of thisbox,in pounds it

greater than the length of this'-box in inches" is a meaningful, evenif rather

uninteresting, statement about numbers; it is numbers which are being compared, .

and not-the'dtMain elements which determine them through the specified measure

functions.

0
2 -5 Length In Formal Mathematical Systems

,

in order to discuss the Concept of length; within a

system, we must, of course, have a precise description

*,.. example, if our mathematical system is the so-called num
...,

fine a mathematical concept of length in a particularly

-

formal mathematical

of that system. For j
.

ter line, we can de-

simple way: if A ,,
?B. R , 74 B we may define the segment AB- bit 4

.;:;%;

.CAB = (p : p e R , and A.< p <13 < p A) .

o

.

. . ,

and we can define' a "length"' function X on the set of, all segments bitI f

C$

'' 'MAIO. = IA - BI . ,,

fif(AB) .ie usuhlly denoted in geometry by AB : use this- notation where

-convenient.)
t

120 116 :
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The corresponding situation in the cartesian plane F x R , and in car,

. .

2:5

.tesian 3-space; RXRxR, is well-known, and very little more complicated.

:Does this mean that the mathematical theory of lengths is completely simple --'

virtually trivial? Not nt all: two important questions should LAmtediately

occur to you: 7

(i) What isthe justificatioji for assuming (for ex ample) a 1-1 corres-

pondence between points.of the line,'the plan* and.spaog, and the

real numbers, orde d pairs of realpumbers, and ordered triples

of real numbers, respectively?
e .

.

(ii) What about length for subsets of space which are not line segMentp?

Question amoupts tasking for a justification for cartesian gp,metry;'.

Such a justification could.be empirical, or it could be giverl.in terms tf some

other axiomatic treatment of geometry. Question (ii) is the-very important

question of "extension of the domain".
. - , -

We look first at mathemalical!matters related to guestioh before

we can attempt an answer, we.must be 'clear about what the question means'. -

RoUghly speaking, it asks,for a procedure by means of which we may establish the

isomorphism of a."given"geometry' with cartesiantgeometry. - In order tO answer

this question we have-to be clear about the geoMetry that 'isr "given ", i.e.,

about-our assumptions, or postulates.
Af

'Unfortunately, no matter how wekroceed, it is much harder
.

ito gvd a full.-. .
system of axioms for "geometry", than it is for the natural numbers. 'Thus,

.
4

,although in principle this section is capable of precise presentation, this --,

implies that we should first make cliear all of our-assumptions. We will com-

.promise a little on ideal, and hope that the,..omissions.will not obscure
+". ' 1...

the essent
_i -....,....e "'

...4 -'.'' ''.f '' .''''''''''s***4
- ...zy ' ' I

.,y,, .01 -..........e"W1 . .i. ..- . - - - - - - ... ,. 4. ! , . .4 I
e

I

(f;We s examine the question ol"'matheraatical length"'in threemain
, - %

contexts: w assical euclidean geometry,.tliat of Cartesian geometry,
.. ?41V

.4=

and from the. latermediete" standpoint of the treatment of geometry which was

puggested,t7q.,D, 24.4hotf, and 'harried through in ,L/43 ," [15] and Other
.. .

. .,,

recenk books. ft is convenient to' fotiow the terminology of Moise, and refer

to this last approach as megYicgeometry,

11-4-) I1'4 1
o f
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.

Length iniMetric Geometry. If we examine a metric treatment of geometry

(such as the SMSG treatment) based on "ruler" and "protractor" axioms we find

that (if S denotes spacfe) a Ilistance function .

a : S x 8 -4R

is postulated. In other words, for each pair'oi' points A , B e S , it is

assumed that a distanCe, a(A,B) ifs given. (This notation may be abbreviated

to AB , but. it is more-instructive, for some of our purposes, to use the

longer notation.,' The following properties are postulated for a :

(i) For all A , B e S , a(A,B) > 0 ., %.

(ii) a(A,B) =0 if .td only if A = B .

(i 4.1.)* a(A,E) = a(p,A) .

10
A line is a set of points., (This is not a definition: "line" is an

undefined concept in metric geometry.) A coordinate system for a line i is
defined to, be a -,1 correspondence of the given lide and the reEh. number.sys-

. 6 vt fe
tem, 4 , (i.e., a 1-1 onto function. 9: i which'is related to the

distance function, a , as follows:

If A , B e 2 , 'then a(A,B) = !p(A) 9(B)I

It iTt#eu,postulated (the so- called "ruler postulate"). that, for.each

line i , -here exists a coordinate system. (4t is further postulated that
if.

if ,1)., Q.E P / Q ,,then there exists a coordinate system, 9, for

such that, 9(P) = 0 ; and 9(Q)*> O.; this posttQ.ate is not really.needel:

it-can bekroved as a theorem.) We.economize on'notation by using the same

symbol 9 for each of the postulated ,coordinate functions, one for each line

tit can be shown (see exercises,) that if '9 is composed with any rigid

motion of. R (i.e., a transformation p on R of the type p : x*--)jx 4.1:3

where ,j = +1 Dr -1 , b e R) then p p is 91so a coordinate system for i ;

i.e., each line has infinttely manyCOMTrinate systems, which areLrelated to .

each other by composition74ith rigid motions, and each of which is relted.tg

the'gllien distance function, ai'lri\tAe'critter

It is further postulated that each pair of (diffeent) 'points,

determines (uniquely) a line, AB , and betweenness is defined by:-

3

A. 2 2 n8 w.
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. 4--)
C is between A and B (denoted by A.- C - B) provided that C e AB

.

<-->
0..

ant. AC ,,CB . AB . For A /4 , the segMpnt AB is now defined by ._

_

AB = :*"C AB and A - C - B) i It: follows immediately that AB = BA .

errespondence is established between the, set of (unordered) pairs

et points an S , and the sets D , ,of all segmentS in

Length Functions. In metric geometry-a-fUnction .

. A . 14 N,

D
+

,

is defined to be a length function if it satisfies

(f) henever A - C - B ,

t.

X(AC) + N.(CB)..= X(AB) ;,

(ii) X gives the same value to congruent, segments. (See below for

definition.)

n etric geometry, the function '

X0 4 D1R
+

fined by X (AB) = oc(A,B) , satisfies (.i) trivially, frbm the definition
0 .

.

of betwee ess. We shall see below that it also satisfies (ii), and hence
.

that it s a length funation,t ----- .
/ -v . __
view of the_far_t-thet---a-ge's uniquely determined by rend i---_____

z s, so that the function's a and K'o are Closely related, you-might

/think that it is an unnecessary luXury to introduce the length function Xo ,
f

in additionto the distance function, cot . We have done this for two main

reasons: . .
.

(i) it makes the treatment .more closely parallel to that of the4 a '
. .

previous section; and
.`

(ii) the domains of .X and a are quite disiinct. When it comes to
0

the question of extendingAthe domain of the rength functions:, it

is the domain" D which we, will-wish to extend, ands,pot the do ain

of a other words, we will, wish to extend the concept of

.

length, io'thai it applies to sets'of points which au not linerl
segments.

e function X.0 is a 1 ngth.function for the.set D , Thinking along

ame lines as for the empirical length functions of the last section we

.7,!hether'ol- not there are any other mathemat4cal "length functions" for D

,
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3 e .

and; if more'TEIn one, how are different length Functions related? Wet shall

see that, as in the previous section, all.functions which are similar to
0

are alto length fundtions.

.

`- 'Congruence and "Length Structure" for Segments. We can establish a

"length structure" in D 'by making strong uSeOf the given distance function

a'. Wp define first a'relation "has the same'length as " (which we denote by

the synibol it 7= ") by
.

i '

. AB :4- CD if and only if ea(A,B) = d(C,D) .

The usual word used in gepmetry for this relation an segments, is congruent.

It is trivial to verifythat congruence of segments is ameguivalence 'rela-

tion: we denote the set of equivalence classes by D . Trivially, the defined

functio4, gives the same value to congrueht segmenta, and hence is a

length function. Any length function for D must give the same value to '

congruent segments, and hence determine a corresponding (length) function for

D it is convenient to use the same name fprccrresponding functions. We

also use the given distance function to define a relation4iless:than in

length" .(<) in D (and hence in D) by'

. AB CD if and only if a(A,B) <a(C,D).6.,

and we prove easily that this gives a {strict, total) or41-1.elation in D .

- . .We ldok next fo'r some dperation in D or D which will be analogous to
--. .the join operation of the previous*ggCtion. We will not be able to carry out

. .

physical opeiations on dur segments (such as placing them endto end) but our

v..syme permit-us to do something rather like thil: we can use the coordinate

structure of each line to prove that, given any two segments AB , Cp , and
any 1 , there exist (illignfinibely,many, way pOints E , F G on

such that E- F - G , AB = EF , and CD/..4 FG Lit is natural to define

DI = EF * FG

but of coursethis does not lead to a tdnary operation on

tively few pairs of

"joined. However,

e "additive" function

on D .* We can now

determined by AB ,

by the eqUivo,pnce

, because rela-

segments will be suitably located so that they can be

our main interest is in 15', and not in D , and any

on' B immediately yields a corresponding length function

prove that, although EG is certainly notuniquely.,:,,

CD , the equivalence class of .EG is uniquely determined

classes'.of ,AB and CD . (You should provide this proof.)

1 2 4
120
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This enablesls define a join operation onmphe set D of congruence

classes-of segm s. If al a2 are two such classes, denote the join class

by d1 * a2 . (Notice, by the way, that while the join of two rods in the
ti

previous Section placed them end to end, but (empirically) disjoint, the join.

-oftwo segments exists only when they 're collinear, and when. they intersect

in.a common end polinte), '

. We can now prove, purely within the formal framework of our-geotetry,

that the systen ,i/r,.<) is a dense* ordered ai.ch4rmedesen, sbelianosgaigroup;.

and that tqjoirl operation and the order relation are connected by the-pro-

perty thatl d
1

< d
2

if and only if there exists d with :a * a' = a
3 1 3 2

If you provide these (and other) omitted proofs for yourself, usingthe,defini-

tions and postulates given, you will appreciate that their *implicity depends

mainly on the existence of. the postulated distance function a , and on the

existence of the postulated coordinate system,
)
p , for each line. In oche;

words, these are very powerful axioms. (You will probably appreciate this

even more, after you have seen how difficult it is to introduce length func-

tions into classiCalsynthetic geometry.)
. -

,,.
' .

Having now established the structure ofi 5 as a densely, ordered, archi-
,,

medean, abelian semigrOup,'we-could to further
\

and establish a theory of

"ratios" inn D ; by again appealing to the given distance function a : we

Ishall,not stop to do this; it Aggs,nverpresent_any difficulty.

4 5

. If we now reverse our viewpoint, and ask whether there exist any functions

from D to R+ which preserve the structure qg D , it is no surprise to

'discover that the defined length function X (and, more generally, any length

function, 'XO--c-feids a corresponding function on D we use the same symbol,

X
0 for this function) and that this function (and, more generally, any length

function, x) is structure-weserving. (You should verify this: see exercise's.)

Moreover the coordinatelsystem postulate ensures that X0 is onto, and hence

we may use the corresponding result from the p'revio4s section to deduce that

there-exist other isomorphisms of
+

,* ,<), onto kR ,+,<) , and that these

differ fiom X0 (and from one another) by with an automotphiail

(i.e., a positive similarity: see Theorem 2-2.2) of ($ +, +,<)

We denote the set of functiOns thus,obtained by A , and use the same

notation for the set of corresponding functiOns op D (which are obtained by

composN.the natural 'classification" fun A D , with functions
.

in A ). Each such function, X D -4R , is easily-shown to be a length

function, and'everytUo such functions are similar. The set, Yi'; of length

fU4ctions is an ,example of a ratio scale. P

.1"

.
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might now ask how these new length functions are connected with our,

geometry? To begin with; we remind you that our first length function, N.0 ,

'was directly derived from our postulated distance function a . C d we

reverse the process,-and construct other distance'functions:from a oaf :tee

gthpi length functions which a have now discovered? I.e., if N.
1

A , let

,us define -

by
/

a
1

' -4al':

PA

a
1
(A,B) =

%1(T55I if A B.;

0 if A = B .

We know that there exists k >,0 such that X
1

= and hence a
1

= ha

Using this, we can easily prove that a, has the following properties (which,
. .

we recall, were postulated for a) .

(1) For every A , B e S ,cii(A,B) > 0 .

(ii) a1(A,B) ,= 0 if, and only if, A = B .

(iii) a1(A,B) = 01(B,A) .

We can define a new notion of "betweenness" corresponding'to al , and

we can verify that

4A .

(iv) A -B -0(a) if, and only if, A rC(ai) (The notation should

S. be self-explanatory.)

We have already seen that, although one coordinate system T was postu-

lated for each line , there are infinitely many others, related to T by

composition with,rigid motions of R . By direct checking we can verify that,

if k none of these is related to TL In the way that T is related

to . However, it is easy to verify that, fow each line 2 , the "coordinate"

function T" = kq) .(and, more generally, any, function derived from kV by1

A-rigid motion)'is a 1-1 mapping of i onto R , and that it is related to .

J

ar 'in the same way that cp is related to a . That is, for all points

A; B e 2 , ai(A,1) =100t(A,B)=RWA)--q(B)1=IkT(A)-kT(B)1.4.--/Ti(A)-

All of this suggests that We might ask the question: if we develop it

new "geometry" by using 0c01 " , in place of a , T ,,how will it be

related` td our postulated geometry? The answer is, of course, that there

will be no discernibilkdifference: every significant theoreM is the one

gfometvy ia theorem in the other, so it seems reassiele to say that the

.

1 6 122
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geometries on. S are iSomo cor equivalent; in a sense that is not too
-

.difficult to make prgqise. shallThot examine this question in,tietL1, but

if you have filled in the proofs which we om* ed earlier in this section,

then you will have done most' of the work.

Perhaps the relationship of distance/length and congruence should be

made a little clearet. If, as in the vetric approach to, geometry, we postu-

late a distance function, then congruence is defined in terms of that function.

For reasons Of simplicity, congruence is often defined separately for various'.

subsets of space (segmentS, angles, triangles,, and soon) but eventually these

are all brought together with angle definition: subsets and K2 of

space (S)' are said to be congruent (written ki = 1(2) , if and oplifAltei-e

ids a tigid. motion, or congruence, of S onto S,, Which'Maps 1(. onto K2

A rigid motion iFdefined to be a 1-1 correspondence which preserves distances.
e -

I.e.,

'p :mb

is a rigid motion; if it is 1 -1 and onto, and if for all pairs of points A

Bp e S ,

n a(A,B) = ce(p(A) ,p(B))

,

where a is the distance function. Now a
1

is another distance function,

ftffering from a by composition with a positivg similaeity of R , then we

have

al(A,B) =lea(A,B) = ka(pfA) :0(B))

_= oi(P(A) ,W(B))
N

In other words: p is a rigid.motion in terms of a , if "`and only if it is a

rigid motion in terms of al . It follws that the basic nation of congruence

is unaffected by the change of tistance function which we have introduced. It

Can be shown that composition with a p ositive similarity is the only possible
.

variation fot , if the set (actually a group) of rigid motions of p .(and

hence the notion bf congrUence).is to be unchanged.

We can sumup the above by saying that, although the treatment of geometry
0

which we have
ik

Sketched (in part) postulated a particular distance-function a ,

And a particular coordinate sy)tem cp.? there are infinitely many otherV,Co-

ordinate systems which coi&spond to the given distance function; and there are

infinitely many, other equivalent distance functions, each with its own related

set of coordinate systems, Mbreover,these additional distance functions and

coordinate systems are related,tO the postulated functions and to each other



--ki

s.:

by positivWsimilarities. gorresppnding to each]distance fUnction-there.-ds.a

length function on segMents, and the set Of admiSsible length functions is

invariant under composition with positive similarities,. The basic notions oft

betweenness and congruefice are the.same 'or all equivalent distance Xunctions.
-

.

, In the Birkho f treatment of geometry, wheieVer a "length- is mentioned-
.t is understood t' thit' is e "length" in terms of the postulated distance

;function, and a related co:or:di ate system. TbUs...the length function is >clearly-,
-determined and understood, and need t be specifically identified.-

c
Oorresponding to each length 'function, there,is a unit; -this-is Lire---"

equivalence class, in D , which maps into the real number 1 , under the
-length function. Conversely; given anyowpivAlence class in D , thpre is a
length function fdr which that'class'is the unit.

The situation is very similar to that described in the section on the
empirical idea df length, and ,many of the results of that section will, of
coursecarry'over. In particular, there are the-.same relationships between
units and length furttionq and the results of all of the relevant Exercises
2-4 are still true r In fact, the.proofs are essentially the same as those
which (hopefully) bwti supplied before.

It should not have surprised you that, although the.- metric trealimpt of
geometry appeared to favor one palicular length function and one particular
coordinate function, fan identical treatment' could be carried out by using any,

, equivalent length,function, and,any
corresponding coordinate function. After

, all, the geometry of Euclid was carried -*rough without the use of, ara lengt

; using ohll t e structure of D asikadensely
ordered abelian semi

,group-- structure which (not in'those terms of course) was derived from a
unit-free set of axioms. (See later.)

Before leaving the metric treatment, there are several matters which we
should mention:

.

(i) There are .inportani chestions concerning extension.of domain:

these are not:specific to the metrie)treatment, so we defer

consideration until later.

(ii) From the beginnings which .we have sketched 'for a metric treatment,

one can probeed to develop the familiaresults of geometry,

including, inparticular,,the possiilitSTof setting up a car-

tesi_an_000rdinate system for 'themhole of space: i.e., a 1-1

mapping p of °S Ottof".RxRxR with the-proRerty that

128
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4. .

a(AB) . '((a - b )
2
+ (a - b )

2
+ (a - b )

2
)
1/2

, where
.

' - 1 1 2 2
3

O) . (a1,(a2,y ,,p(B) = (1)1,b2,b3) . Details of this

development can be-found in the references.
.

.. -

(iii) ifyou examine the many theorems (in a metric treatment of

geometry.) which involve the concept of length, you wills find that

the apual values of the postuiated'distance functiopare not

used in any essential way. In other Aords,.for any segment it

is _only the congruence class,in D which is invO14e, and this
4 )

is the same.under all admissible length lInctions.

(iv) Two important theorems whj_ch involve length, are Pythikorast

Theorem (whose result is easily shown invariant under a AmilarAy

transformation of R +) and the so-called "triangle inequality ",

which Itates that the sum of the lengths Of any two sides of s

triangle- is greater than 'the length of the third side.. Notice

that if the '.!length of a segment" were to be interp-reted as the

equivalence class in D to whidh the-Segment belongs, the latter

theorem is still valid in terms of the structure of D,; but the

corresponding Interpretati!onlof Pythagoras' Theorem is not satis-

factory, because we do not have a multiplication iA D . This

'does not mean that Pythagoras' Theorem forceS us, to use the values

'of a length function in R , but it does mean that; if. we wish to

avoid the use of values; then we must proceed ifl some other way..

For example, we could consider art appropriate,structure in 15 x'E; ,

and this would lead us in the direction of.area. Thisis) of

course, the way in whickthe Greeks saw Pythagoras' Theorem: for

them it was a- theorem about area.

Ih view of the impossibility

not we really needed R as

fundtions, we might question

of deciding empirically whether or .

aVAlte space for\Our_erilpirical length

the use of the real numberg,rather

than the rational numbers, or some other subset of R , in the

postulated/distance-function, and in the coordintte-system postu-

iate; (and in the angle measure function which is also postulated

in metric geometry),'

,

-1Te look briefly at this last question. As,pa;t 6f the systematic develop-_
'

ment mentioned in (ii), we will have proved Pythagoras' Theorem. From this,

we see that, if we had_ tentatively begun witki the rationals Q , zae would _

red6.a.point where we would require a number whose square is 2 , in.order,/ --
,..., ,

.. / ' .
'

*RP
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to satisfy 06 distance pos ate, (Z.e., j.f every segment has 1"length",,
°then the length of the hypotenuse of a right isosceles triangle wlibse congruent

r""csides have length "l' ; must be ,AT . This tells us, in particular, that

the hypothesis that euclidean geometry is a suitable model for real space',

implies that there exist irrationally related "distances" in real space. -4)

remarked earlier; whether this is, in fact, the case, can never be decided

empirically; and it might pot even be meaningful to ask the question.) As is

Well,-known, the reel num b is not.rational. This does.not, of course,

iell us that we .must.use the umbeils: it merely says that the rationals
1

are insufficient. We might proceed cautiously, and tentatively try out the

surd numbers. (Briefly, the surd field is a subfield of the real numbers: it

is the least field which contains the rationajs, and which is closed under any

finite number of the operations of addition, subtraction, multiplication;

division, and square root extraction.' It is far from being, the whole real

field: for example it does not even contain the simple algebraic number 3AT ,

.. -
a fact of considerable importance in the proof that there is no geometric

construction for "duplicating the cube".) This would set around the difficulty
t

produced by Pythagorast Theorem, and it would give us a geometry which is ,

satisfactory for many purposes, and which (with,suitable definitions of the

terms involved) can be shown to satisfy the postulates of classical synthetic

geometry. But if, for example, we ,e to require the existence of angles

whose measures are integral subm tiples of existing angles, we would en-
,

counter another problem: som angles (e.g., an angle whose degree measure is

460) would fail to have "tr' ectors". At this stage owe might well wish to

impose conditions which wou d.require that our image space should,at_least.

include the algebraicnumb rs. '(This field contains all those real numbers
30-"r

which are roots dOrAome polynomial equation with integer coefficients: it

is intermediate between the surd field and the real field.) It is possible

that by putting
4
more and more demands on our geometry we could reach a point

where the reels would be needed, but, as stated above, such a requirement'is

not, needed in order to satisfy the axioms of classical synthetic geometry, for

which tie surd field is quite adequate. Thus the ruler postulate, in requiring
.

a which is onto the redls (which implies that, the distance function-

is also Onto) represents a strengthening of classical geometry. Metric geo-

metry; using the full set of real nUMberd; is only one of the geometries which

satisfy the axioms of'classical synthetic geometry, (We shall see later just

what-additional postulates are needed if synthetic geometry is to be necessarily.

isomorphic to metric geometry, and to real cartesian geometry.)

it
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Exercises 2-5::
4

1. Show that the rigid motions of R defined by- -.:.
1 :

p x jx + (j ,b

form a (non-abelian) group under composition, and that this group is

a subgroup of the# affine group 'A t (Cf iSectir .5*

2.4 If p is a rigid motion on R, iicf'67;---(p., denote the postulated

distance function and coordinate function, for a 'show that

the composite transformation pp is also a coordinate system for .e . :2
A --

That is, pcp is 1-1 onto, and has.theeproperty.'that for At , B. .

a(A,B) = Ipcp(A) - pg)(I0] . %-

_ -

Verify that the function

X D R+

derived from the postulated diStance function andthe ruler postulate
0 4

of metric geoMetry, is an isomorphism of the ordered abell.an'semigroup
,

,

(D ,* ,<) onto the ordered abelian semigroup (R
+
,+,<)

4. Prove that the set of functions

F = ff : f = pk,k

Where p is a rigid motion of, R ,'is the group A of affine transfor-
.

orations of IR .

Length in Synthetic Geometry. In a certain sense.length does not appear

in classical exmlidean geometry (usually referred to as synthetic geometry)

so the heating ab vb might be considered inappropriate. But what we are going

to do, is show that a notion of .length is implicit in synthetic geometfy; and
that it may be introduced explicitly, so as to give, the dptanceicoordinate

ft

structure which is postulated in the. metric approach (and from which,the fully-,

coordinate cartesian structure can be developed). A fully detailed treatment

would be too lengthy fordthig.book, butt we can sketch the,main lines of the

development., You will see that these have considerable similarity to the

empirical-proure which we described for the establishment of a 1tngth-

structure, with segments corresponding to rods, and congruence corresponding

to the empirical relation "equivalent with resfect to length".

- NAN
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o

Insynthetic geometry, we have the usual incidence structure, with

points, lines, planes (as undefined concepts) related by.the so-called.

"incidence axioms"; (e.g., given two different points, there exists exactly

one line containing them; given threw non-co inear points, there exists

exactly 9.11c._4.1-ahe-containing,them; n o op These are the same as,in,

th,Imet.r.it_treatment. .But, whereas in the metric approac.h.a distance coordi-

nate structure is Postulatedand the-concepts of congruence and betweenness
4

are defined and their properties proved, in the synthetic approach congruence

and betweenness are undefiped concepts, with posVlated yioperties. -, Insofar

as these postulates involve segments, we 'shall have to use them in order to

establish a concept of length, so we.go into some detail here:

In synthetic geometry, congruence of segments is a postLated relation

(for which we use the symbol " ") on the set of all segments. (I.e., for

each two.segments,.either they are congruent or they are n t congruent: this

is analogous to the assumption df an exact physica ro ure for the deter7 .

mination of length-equivalence ornori-equivalende for rods.) Segment is

Wined in the usual way, in terms of the concept of "betweenness". In syn-

thetic geometry, betweenness is a relation on ordered triples of points. We
, .

'adopt the simple notation A - B - C (read as "B is between. A and C") .

r--
.Thus for each ordered triple of points (X,Y,Z) , it i postulated that either

X - Y - Z or (not X -Y -Z) . It'shouldbenoted tha F clid did not formu-

late the idea of betweenness explicitly, but he definitely made use of it

Implicitly, and used the following betweenness pelitulates without explicitly

stating them: 0

If X -Y -Z then X , Y , Z are different collinear points'.

Given three different collinear points, exactly one is between

the other two.

B-1

B-2

B

B-4 2

11L
The relation is symietric in the sense that X -Y -Z if and

4
only if Z - X .

, . .

IfOrX and Y are any two points, then there

S uch that X -Z -Y , and W -Y
00,(

B-5 Any four collinear points can be named in

X
4

such'that X
1
-X

2
-X

3
-X This is

condition; the notation means that all

Xl .-X2 -X3 , Xi -X2 -X4 X1 -X3 ,

_128
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of

X2

are points AZ,, W ,

0
an order X1 , X2,

a kind of transitivity

the four relations' '

-X3 hold.)
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The congruence postulates _for segments are:

CS -1 Congruence is. anequivalence roelation oh the set D of all segments .

CS.-2 .Given_a -segment AB and a ray XY , there 'is a unique point

Z E XY such that = XZ .

(
- Congruence and .betweenness are related in the postulate:

4 ,
A - - C , A - C , and A -B A B then
1 1' '2 *2 2 1 1, 2 2

= B2C2 if, and- only if AiCi = A2C2 .

As before, we define a length function for -the set

. in space, to be a function-

R+

D clf al& segments

which has the properties

(1) if dl , d2 , are segments, and di d2 , then X(d1) ;:

(ii) if X - Y - 'Z., then X(XY) + X(YZ) = X(XZ) .

.

We are now ready to establ ish a suitable "length structure" in D

(the sdt of all segments) and in D (the pet of congruence classes of

segments). Congruence is the equivalence relation which corresponds to the

idea "same length". A notion of order is quite simply, introduced: we define

AB < XY if there exists Z with X - Z,- Y and AB Z.- XZ . Using the corj

gruence and betweenness postulates, it

priovel,the ,following:

47"

is straightforward (see exercises

( ) relation is-transitive.j

t

(ii) The relation < ii "preserver under congruence, and hence yields

-a corresponding -relation (for which we use the samee.sym 1)01) ont
(Ili) For _any two segments AB , X1-5, exactly one of thefollowing

AB < ; AB ".= ICY ; xy < AB ; hence ,trichotomy /holds for <

.- D, so that < is a strict total order relation in 15
4 f "

We,-intriiduce next. a join operation (*) in D , ,and on D . If

A -13-.0 , we define AB*. BC = some properties of

in D but -by now you should see.that will,b& simplest to go directly to

,Vie set of congruence -classes; D .-;Given dl d2 e D ,let A1B1 e dl
,4 ---AB

2
ed2 then, from the postulates, we can.find Ci 'such that Al -Bl- Cl1,.. 2

D .

holds,

in

129
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and 'BiCi = A2B2 . We define the

denote thiS join by al* a'2".

Ai

21.a of
211

and to to be

We must first verify (see exercises)

, and

(
,

that this yields a (singlejvdlued) operation in D ; we

must prove that the congruence class A
1
C
1

is unchanged' tor

different chqices of scents from di and d2)

We Should next Prove (see exercises below), that the join operatiOn oh

B 'has the properties:

(ii) is associative;

(iii) it is commutative;

(iv') it preserves order,,ih the sense that

A1 B'<AB2 <=>A1 D1 *XY<A2 B
2
*Tr

2

for any segment XY .

.

5. Prove the asserVons (i) (itly. made above concerning the relation

< for segMents.

1140-

Exercises L2 (continued)

0

.
. 6. Prove the assertions (i) -- (iv) made above concerning the properties

of the join operation on the set of congruence classes or segments.

---7. If :Xi -x2 -X3 -.X4 , I:low that x..14.x3.-:)c---)c). ,. and that no other
. i

order isppsble.

/
8.. PrOve that the order relation ) < /ciln 15 is dense, and that, D contains

'04
.

no iaast'element and no greatest element. .:

4.

9. If m , n Olsiii-prositive integers, and n(d) denotes -the n-fold iterated

join, ppve that, for' all m , n , and a

a m + n)d = md * 1113 ;

(b).'n(al *42)* = nal *,na2.:;

'(c) (mn)d = m(na) = n(na;

(d). a .

10. PrOvet'that d < d2 , if and only if nd
1

< nd
2 .

for each positive

*,.

integer n .

. -=

ti
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11. Prove that for positive integers m 0 n and 7:1 ck.jo

and <.na if and only if m .

2-5

le

. By now we have arrived at a,structure, (D, , <) , which' is a densely-
,

ordered, abelian, semigroup.

In other words, we have derived (from the postulates) for the set of

congruence, classes of segments, a structure which is simnear to the structure

developed empleically and inductively for the set Of equivalence classes of

rods in Section 274. It follows that if we ask the questiohs: A .

(i) Are there any structure-preserving mappings from (5, * , <) to

(+,+,<) ?

.0.

(ii) If there is more-than one such map, how are they related? ,

then,the answer to question (ii) will be, exactly as before. That is, if'

there exists ja structure-preierving map X , from 05 , * , <) to kR
+

then there exist infinitely many; and if X is onto, then these are all

related by composition with positive similarities. Moreover, if A 'denotes
,

the set of all such structure-preserving mappings, the group S
+

, of positive

similaritransformations of R , is isomorphic to the group of those auto-

.inorphisms of A which preselwe its algebraic structure as an ordered abelian
Nq
0

semigroup, (A ,+,<), of'functions.

The structure-preserving functions (if any) in A , will, of course,

' yield length functions for segments; and, conversely, any length function
.

will correspond to such a structure-preserving function. If X .is any one
.

of these, we°M'a'y establish a distance function a., asingCated earlier..

From this, if N- is onto R+ ,it.is not too difficult to set. up a suitable

coordinate function on each line "2 , by the following,prOcedure:

Let -A -, S , with )3- A -C .

(ii) If X is any point on the ray /5.13 "%alnd Y any point on., the '

opposite ray. AC , define f : i -+11 by . :

.f(A) =0

0

f(Y) =.-a(A,YY = -x(AY) .

In order that f be a suitable coordinate function as postulated in the (

metric treatment of geometry, we must prove that f is onto R , and that

4
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for any two points P , Q , c ,

a(P,Q) = li(P) f(Q)I
Ar,

You should be able, to prove these results for yousdlf (under the assumption,.

of course, that a length function : D -)R+ exists, and that N. is onto).

Existence of Length Functions. The procedUres which we might follow-, to

.**set up a suitable ,length function on D. , are quite similar to those used in.r.,

the last section to establish such a function empirically on t'he set of

equivalence classes of rods. However,. 4ereas in4he'discussion of the ph3;Si- =

cal measurement of length we could appeal.to empirical evidence to support the

assumptions which were needed, here we must stay within the limitations of the

axioms of synthetic geometry, and we must,prove both the existence of the

objects used IrrouF procedure (e.g.,, integral multiples and submultiples of

a given segment) and the correctness'oT our result.-
.

.2 '

*0

Method r.
.

.

If we consider the mathematical counterort oP our empirical "Method I",
4

We see that we must firSt select, as a unit, an equivalence class a -cs.
0

segments -'Let AA' be any segment in ao . For any other segment PQ , -

we can parallel our empirical process', using the congx4ience andbetweenness
t

postulateS, to establish the existence of points X1 ,'X2 , ... , Xn-, ... on
.-

the ray PQ , such that P -.Xi - X2 - ... - Xn - ...7, and-with

. 0. -
. ,...PX1 = ya . ...,. Ago . But, in .order to assert thatthere will exist a

D

'positive integer n,
.

u
such that either X'n = Q , or P - Xn -Q - X(n :

+1 )

0040 . .
.

1.we must add the archimedean postulate to the axioms of classical synthetic -,-- lf

..,*

geometry: (Remembdr that the archimedean postulate is equivalent to the

statement that, given 14x two segments L1L2 ,-MiM2 ,,there'ekists a pii,taitive

---integer n such that n(LiL2) > MiM2 .) ",)

ti

--11!he ryoxt step rtquireq the existence of a segment ,A1B1 , such t at0 for

some positive integer m , (m > 1)
.

sm(Itlk) = Ack
.

,

For any i.,teger: ill >2, we can show the existence of such a "submultiN.CAqf

Aopo , by using "parallel projection ", as in the well -known constructio
,

subdividing a segment into m congruent parts. If we take m = 1.4,-,iFfaxtt-
-x

. '

I
132
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'Icohtinue,t our earlier empirical procedure, to .establish 0.6 existence

of successive digits in a decimal, number r = no.nln.2
Ss.

. We th9n.defincop

a function, X by

1

Thia procedu e is relatively simple to describe,, but it is awkward to verify

that the "constructed'' function, X , has,the desired propetty of mapping the

ordered semigroup (D , *, <) isomorphically.into (R : If you have

ever tried to carry through a development dy'trie real number'system, based

on decimal "sequences", you wiil be quite familiar with this particular

difficulty!. If yolLthink about it, youvwill see that it is relatively

straightforward to prove that X gives_the same value on congruent segments,

and hence carries over to congruence clasdes, and that preserves inquali-

ties. The difficulty comes in proving that X is additive thgt X
'4OF

carries joins ih D, into'sums in R if you'attempt to construct such a

proof, you will find that you get involved in illthe awkwardness of adding

decimal fractions.from"left to'right. No'doubt a proof could be carried
o

throUgh, but we shall not aAeMpt it,,becz'te it is simpler, *and more instruc-t
4

-

tive, to carry through, Method II below inconsiderable detail.

We remark that the axioms of synthetic geometry, aug- mented by the archi-

Medean postulate, do not permit us to prove that X is onto. The best we

could dcr in this direction is to show that the range of X =must contain at, .a-
least _we positive surd Inmbers.. We look'at this question again after dis-

.

cussing'the sqcond method,, merely noting here that the demonstration-of the,
. .

74.Y4
existence

S

of integral multiples and integral submult1ies can be extended, to

show Vhstexistence of all positive rational " ',multiples' of any segment; and

thus, in particular, the existence of arbitrari mall." and arbitrarily

Vlarger" tegie0s.

_ 1
, 1 s, 0

1 OA b--e '." Method II i
or, -,

1

g - , --

1
.

In disciassing the phy4cal procedure or establishing length functions,

there did not appea0o be any stro reason for preferring 'either method.,
,

but in the context of synthetic geo etry, if we really intInd to fill in all
i

.

of,thedetaisthesecondmethodhas,many advantages: As in the pi%ical
A

situation, w Dean establish a "theolr of ratios for congru,ence classes of

I

segments. is theory is,qUite independent of anyquestion'of the selection
1 _

( ,-ofeuhits".4.
t

I

. ,

)
r

1

,

,J
,

133

ep

OCS



a 4

2-5

We first introduce an "equal-ratio" relation on the set of ordered pairs

of congruence classes (i.e., in "15 x 1) . We define the relation, - , by

(a
1,
5
2

) (a a
4

)
4

if, for positive integers m , md2 <.nd1 malt. < nd3 . It is not

difficult to prove that this relation is an equivalence relation: i.e.', it

symmetric, reflexive, and transitive. We coulA,(as EUcly.did) go ahead

and define inequalities between classes of equivalent ratios, And prove many

properties, X11 without the assumption of an archimedean postulate.` But these

proofs are quite tedious, and this would distract us, from our main objective:

-the construction of a suitable length functiOn on D .

' We observe that the procedure for defining the above equivalence relation

x p ,.suggests a procedure fOr defining an (absolute) real valued func-

tion on theset K of equivalence classes in D x D . For any such class,
p , and any (g

l'
a
2

) in p , let, C = (12 n positive integers, and

md
2

< nd
1

) . We observ first .m
that if any fraction - e C , then all equiva-

lent fractions belong to C (Exercise°10 above) so that we can consider b-

to be a set of rational numbers.. We see immediately, from the definition of

the equivalence relation - for ratios, that C does not depend on the
.choice of (d d

2
) in p Moreover it appears that (possibly with additional

assumptions). theset-ofrational numbers C might be a cut. Ir so, it

determines a real number r , and we could go ahead and define our desired

function by p . We arinow-at a critical point4hothe discussion,

so' we slow down and fill in some of the details: We draw on the,results of

Exercises 2-5-(54 6i 9, 10, 11) above, whose proofs are fairly straight-

forward.-
o

46001*'
. .

Theorem 2-5.1., rf, in addition to the usual postulates of synthetic
ri
geometry,

we asslime the archimedean postulate, then the set! C of rational numbers

(defined above) is a cut.,

1

,Proof. We must first show 'Chat every positive rational 'belongs either to C--Th
.

,

or to 'its complement in Q* end that neither C nor its complement is
k . 1

empty. That every positive rational belongs to '.0 or to its complement
.

follows from trichotomy...4n B . From the-archimedean,postulate, there exist
- positive integers p , q , such that

a

- %134
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Hence
1
- e C and
p

1

< pa' ' < 4
2 1 1 2

q C ,so thatneither C nor its

We must next show that

2: mi
n
2

n
1

,Hence

ml 712 mlif -- C and < ,
n
1

2 4 i

hen frIm2ni < n2m1 . iHence

.and therefore

O

m2n1d2 < n2mia2

o < n2nlal

m2d2 < n2a1

m
2 ,

e
n2

. Finally; we have to show that, if -- e C , then there

such that
n1

Since

definitions of * and' < ,

nil

2-5

complement is empty.,

m2
then r c C If

2

(Exercise 11 above)

(Definition of C) .

(Exercise 10 above)

(Definition of C)

m
n

2
exists C ,

e C , we have m1a2 < nidi
"1

there exists . 4
3

such that

nial mla2, a3,.

From the archimedean postulate, there exists a positive

ta
3

a- . Hence

Hence

* ta3,

> tm1d2* d2

e- 3 tmi + 1,

tm e C , and
1

This completes the proof of the theorem.

(tut! 1)a2 ,

tin'. 4' tmi =
tr,11' tni. :1112

.

. Hence, from the,....,

iin7ger t, such that

(Exercise 9'abOve)

on.'the archimedean'postulate.-

1

.4

.1,

r1

(Exerciser,6 above)

(Exercise

' . i

9 above),!

penAYou Should nqte how much we
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We now dee the funttion
.

c': K 4-4 R' 001

.

0

by T(P) = r ) 0

where r is the real number determined,by the cut C above. We shall use

the same symbol, cc) , to denote the corresponding,functioq on D X D and

(we shall prove that T is an addiiive ratio operation, as defined in the

last section.

000
Theorem 2-5.2. The function T has .the following properties: for any

20 al / 22 5

(i) If al < a2 , then cp(d2i,a0.) < ;

(ii) T(21 * d2,d0) val,^cf0) + T(a2,^cf0) c
Wf .

(In). a(a.Val °011a0) q(aVad

Proof. In view ofthe fact that T is defined by using cuts, you Will not

be surprised to dsc8ver that the proof of this theorem makes full use of the

properties of cuts, and that it looks like many of the proofs found in

elementary analysis.

Proof of (i). The monotone property, (1), is most easily proved as a conse-

quencequence of(ii). ,e(Ssume that (ii)
0 has been proved, 0 that dl < d2 Then

there exists al, with al.* a3 = a2 . Hence, from the additive p/operty

(ii) of -T
V. -.0- -,-----1"-%

T(d, d) = T(d* d , d = val,a0) ,a )
3 .!..0

so that

`7"aii,, required.

'''
- ./-- ,

,..- t !
,'

.--

Proof of (ii): (Additive Property of T .) Let C = 011 : ma < nay}
1 n 0 /

T (a
1,
a) <JT(a

2'
a
0

)

_ 44

C = ; 'md < nd , and C = :0m . *20 n 0 2 30
m.

`n 0
< n( "al

#1.1

2
))

t.
I



Let 2

n
i

C
' n

2

C20
20

4 1

.

We shaaa show first that

We have

.( Hence,

Hence,

ml +
m
2

_
Min2 +1/12/11

C
3n1 , n2 n

1
n
2

miao

(mint

< nIdi , and m2d0 < n2a2

11121,11).a0 m11.120 * m2n1710

* n2n1a2

= nin2(a1 *, a2)

11-1L + --2-EC
ni n2 30 '

and therefore, from the definition of addition for cuts,

a , clo c20 5 c30

We shall complete the proof of (ii) by that..

o C C + C
30 10

C20

This is accomplished by proving that, if

46 that

(Of. exercise 2-2.3.)

and

n2

m2
L,.;$

20
2

mi m2 k

n
1

n
2

r
C302

C + C
30 10 2 ,,,

Ci0

implies that

00

1

1.

implies that
m2d,Q > n2a2

.137
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~tence
(mln2 m2n1)d0 m1n2a0 * m2n1a0

11.1n2a1 * nela2-'

= nin201 *,a2)

,Therefore
ml n2 m2n1

ml
02

. C
n

.

l n2 30

Hence C
10

C
20

= C30 , andAehce p is additive.

.--- ,

Proof of (iii). ,(Cancellation Property.) With.a similar notation to that used
lieArlier,

let
' ..

m - .:

C21
(1-1- ; md1 < na2).,-

r.

C
= (1.1 : ml< n5 I -

10 n 0 lz

C20 '

m50 < nd2) .

°
Then, if C

Ti
C21 and 7 e C10 , we have .rd0 sdi pal < qd2 , hnd hence

.

pra
o
<psa

1 qs
< qs7:1

2
"Hence RE

q s
(= .1) C

20
. \Hen* from the definition

of .multiplication for cuts, ,

4

C21 .P10 .5- C20 .,A 4, j 4 .0 4

shall spew equality,, by proving the opposite 'inequality; from Exercise 2-2.4,

this will be accomplished 4f we show that,if C21 erne a then
q 21 s 10

,

-r- C .
q - s 20

Hence '

so thatl_.
d

It fond s that

q C21
implies that

C10
implies that rd0 sdl

pr% > psal > qs

Ai >qci

i= I! c
Y;` q s' 20

\,
1

= C C so that the'canaegation property holds", an4
1 1;

29 21 1.0 '
.

1

. 't1

9 is anadditive ratio operation for D .
; I F
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11

Comment, If you worked through the above proof in detail, you might have

felt that the proof would have been simpler if we had had available positi4e

rational "multiples" Of segment classes, instead of just integral multiples.

It is a fact, as we suggested earlier, thA an "algebra" of such positive

rational multiples can be developed, and that it can be used in constructing

a proof Of the above theorem. (The.existence of all real multiples cannot be
(

shown tpless we make further assumptions.: this question of -"complgteness" is

,discussed later.) If yOu want to see how thelaltdrnative proof goes, you
.

should work the following exercises:

Exercibes 2-5 (continued)

12. By .analogy with'the cAssical construction procedures of geometry, prove

..hat, for each positive integer n , and each congruence class al of

Segments, there exists a unique congruence class a
2

such-that

nd
2

= a
1

.
1

13. Define the a
2

found in Exercise 12 to be 1- a
1 '

and hence define a
n. .

,

m ".' m m -congruence class 17.1 di , for each fraction 1.71 . Prove-that -IT di its
a

the same for all equivalent fractions, so that.we get a "product" qa
l.

"..

for each positiye rational number q . Piove that thisoduct" for
, .

.., ..

"scalar multiplication") satisfies:
)i

(i) la = a ;

-4,

(ii) .(g1
+ g2)d gla * g2d ;

(iii) ,

(1(31 * d2) gal * ga2 ; 4

f

(iv)
(glgda gl(gil) ;

(v) for every a , qi> irty lf-td.only if qi(a) >.q2(a)' ;

;

(vi) fQr every positive rational q , al > d2 if and Only if q(a1):>q(a2).

14.. Use the result of Exercise 13 to construct an alternative proof to

Theorem 2-5.2.

a 139 " :

1,43,



2 -5

r

This is about as far as we can go towards setting up a4ength function

without making some arbitrary choic . Usually, at this stage, one selects

one of the equivalence.plasses (say 0) and decides that this shall be the

unit i.e., 7,7e decide, quite arbitrarily, that N.0(a0) = 1 , where ?s.

0
is to

be our length function. In this way we get one length function for each

.choice of do . Actually, instead of using the value "1" , we could define

X0(do) to be any positive real number= say k0 - You' reaction to this is

likely to be that we are being pedantlb thatwe could quickly compose such

a ?s.0 with the similarity transformation 17.- and get another length function
0

which would'take
'

d
0

into the number "1'! ; and the equivalence class corres-

ponding
'-

ponding to d would,'in fact, be the unit for X0 , so why not start with
ko 0

this unit to begin with? The difficulty is that we do not, ow that there is

always an equivalence class corresponding to
I

d so far we have only
ko 0 (

shown the existence of rational multiples; and k
0

need not be rational. In

fact, as Mentioned earlier, there are geometries (such as cartesian surd geo-

metry, in which all coordinates must be surds) which satisfy all;of the.postu-
,

lates.of synthetic geometry, and for which there are length functions which do

nOt map any equivalence class into the nuMber "1"

Usual usage of the 'word "unit", they have no unit.

gaight be something significant in the observation

-- i.e., in terms of.the

This suggeststthat there

that we could be More general

by mapping a selpled tquivalenCe class do into a selected real number',

The difficulty, of coarse, gops back to the properties of the.ratiq oberfi-
,,

tion (1), which we have constructed: the properties which we have proved for
+0

p Will enable us to construct, (assigning values in R to 40) as maqJength

functions, "based" on a as there are elements of R
+

; but,'unless (for
.

0 '

fixed a') '°.msps the settofeiall Ca
' 0

ordered pairs a.i onto R+ , not all
0 cP

of these functions will have units!

We now define,

(*) x (a ) k0 (a) NPCCI ,a ),)k
0 0 0 ; 0 t;40 0

The fist part of the following theorem ip a simple consequence of.our earlier .

OKorem concerning the ratio operation p . The seqond/partjis an exercise
,

in'the'properties of isomorphisms and cuts.

A
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Theorem 2-5.3.

'(i) The function X0 is an isomorphiil of 07),* , <) into (11+,+,) ,

and 'determines a corresponding length function' >

X
0

: D -)R
+

.

°

(ii) If Xi , X2 , are any twotisomorphisms (not necessarily btained

from 9) of (55,t ,<) into (11+,+,<) which agree on a

...element of D , then Xi = X2 . Equivalently, two length functions

which agree 'on any segment, are, in fact, the same function.

-

roof. The prodf of part (i) is quite straightforward, and we leave it to

you. The proof of part (ii) fs very similar to that of Theorem 2-2.3, so we

sketch it only: .first, show that every length function preserves order.

Then show that, because of the finite aaaitive property for length functions,

4. ) xf xi 0 =
2
(a 0),--t, then, X1(00) = qX1(d0)40.2(a)== X2(qa0) for every

positive rational q . Then show that if a its any segment class which is

not equill to gaolfor any positive rationalli,..; then the monotone charactef

of length functions implies that

(a) = [T(d,ac)][x1(a0)] 7 k(40)1[x2(a0)] = x2(a) .

Corollary 1. There are no other length functions than those functions X0

which are obtained, as deScribed above (Mipition *) "from the ratio function

9, Ey eelecting an element :do (of YO and a value kc s'N.0(d0)

Proof. Let X be any length funCtion, not necessarily obttined frOm T as

above. _Let aoc D , anklet Ito be the value.of X at dn . Let X. be

the.length function obtained (by definition. *) frow4the ra tio operation T ,

and such that
0 0
(a`) = Ito . Then, from the theorem, X = Xos

7

'

1, 1'

Corollary 2. Anylength function X may be expressed as the composite of Any
,.

length f9ctionwhich has a unit, and,a suitable positive similarity transfor-

mation

f 1

illation of
:

R
+

. In parti,cul , every two length functions are similar.

1
,

i .,.. n. \Prdof. Let d e D .anct le. X(d ) = k Let X
o

be t 4
,o , 0 0 -

for which Cio is the unit., Then ).t is easy to/prove t,ha
O

, .,

A
eve 7 length funictiOn iS 'similar to X

?
-and hence, bec

1 ' '7,1-' c '' 1 i

.

funWitlw is an equiy,plenCe4elation, every two ;ength f
'tz'a ,.

,k
.

,

length- function

, Hence

use similatty of
t

nations are simiiar.°
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Remark: You should7ote that we have ,now proved that, in,AC"synthetic geometry"

which 'satisfieg thearchimedean poStulate, every-two length functions are

And any function which is similar to alength function is a lefigth

function. That is, the'set of all length'functions (for segments) is a ratio
.

scalewhether or not each function is onto R .

We look,next at the'atructural properties of the "restricted" set of

those length functions fpr whichthere is a unit.
. (I.e." the set Al of

#P7

those lengtii.functions whose range includes the number "1" .) The,relation-
,

ship between fUnCtions in Al is given by at (iii) of TEeore02-5.2. 'For

if x
0 '

e and X (a
0
)4044hatfor-anY Ica, V. by the cancella-

tion
4 ,

piopelty d
.

1
( X ca )0 (

1 Q

In other words, XI is the composite -of X0 with

determined by the number- X
i)
(a
0

) : the'set of all

,Xi e A is not necessarily R hence, although

are all similar, they do not necessarily constitute

We state the following theorem, and leave the prOptf to you
oiso.

the positive similarity

such'` numbers, fpr

the functi-Culs.111_ Al

a ratio scale.

Theorem 2-5.4. 4:4

(1) The range of the function m is a multiplicatiVe

, of o

,. ...c... ,

(ii) 4::.

+
includes the positive surds (and-hencez,of coar the-V

positive rationals); . :
e,

,,-,

_
(iii) tb range of each length function which has-a unit, qciincides re 4

/

Rs

with the range of M ; i.e., it 1s the group 0 ; ,.

:..,{Hint: You must show tha:t. (c(g,g:'0 ) d0 fixed,

t, b.) = (0:6,1;c12) `: fa, .

2
'15) . Because

..7

cp0.1,k),.cp(a0,a2) , you cap

shoing that -there exist segments

d0d2 = anti Id1 :,d07. d"

from well-known geometric constructyons

6v) if YX
0
(g
0

)

1
x(a-) 1

' ,
then X

0
(g
1

)

X (a)

for!every d
u ,1 Xikdi

}.42

1.46

,

cmplete the proof, by

d? such tit
vi

Ti13.4,, of course, f011oliid
,

; and
X1 0)
:;*

f

I
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The Range of the Length Function. As stated earlier, cartesian geometry

with surd coordinates satisfies the axioms of classical synthetic geometry,

and also the archimedean postulate.

is, applicable to cartesian geometry

easily shown that the range, ,

Therefore, the whole'of,the above theory

with surd coordinates. In this case it is

for the corresponding ratio function T ,

is the set of all positive surds.. That is ewe see, from thi9 example, that it

is not negessarY for the ratio functionfor-a geometry which satisfies the
,

archimedean postulate in addiiion tethe usual postulates of synthetic geometry)

to be onto R
+

If for cartesian geometry with surd coordinates, we were to set up our

ratio function T , and then move to a length function N. by defining

N.(d
0

) = g for a selected congruence class. 71
0

, then all length values would

be surd Multiples of n . It can be shown that these numbers are all trans -

cepdental, and hence that thiA N. would not (in the ordinary sense) have a

unit. But it would definitely be .a length func

For any particular length function %0 , delyived from a unit do, the

range of ).0 is just the range of the ratiofunction T restricted to,the

subset K
0

of ordered pairs ("ci a ) witly a
0

fixed. From Theorem 2-5.4,
' +0

,
.,. r-

this is the same as the range 4> of cp'. We can ensure that this range
+

is R , only by adding an additional "completenesS" postulate. We.could put
. APR+

this' in the form: cp(K) = w = R
+

, but this would.be a very strange postu-
4

o late for synthetic geometry, involving explicitly, as it does, the set 'of
,,

positive real numbers. The following is a suitable geometric form for a
'co .

.

completeness postulate whiA,will ensure that 010

+
= R

+

11, Cantor-Dedekind Completeness Postulate. If (dn) is any sequence

of segments such that d
n+1!= dn

for every n , then nfd
n

0
,'

.

n-x

(The notation n d
n

means the intersection of all of the sets d
n
it.)

n

earlier) t4Oti,

Noise calls a synthetic g;eometry with this additional property "complete

in the senseof Dedekindr; other writers refer to it as the Cantor postulate.)

.4 I

It'is not.too,difficult (using properties of cuts and, our privious,dis-
.

cussion,conceNOthe,,exiAence of all positive.rationat. Talar multiples"

ofanY segment) to show that the assumption of the archimedean poStulat::,
) t

t

and the 'cantor-Dedekind postulate, implies, the, of all real Po

"sealer multiples" of any segment. (See ee exercises below.). it.will follow
) .;..

...+-
immediately that 4/ = R

+
, and hence that every admissible 'length function

. .

itive

' , 1

is ,onto ,R . ,If we take any one of these-functions, and use it (lis indicated

0

voy

1 '
a-poordinate system for every line, then it will follow

l43
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A

that eatery such coordinate function will be onto .R . That id,,we will obtain

a distance function few , and4a coordinate function for each line; whach 4
satisfy,ple relevant pOstulates'of the metric treatment of geometry.

ft

It can also be shown tha*tany.sYnthatic geometry which satisfies the
.

ar-chimedean postulate, and the Cantor-Dedekind completeness postulate, is ,.."
.

/ 4.46, .
isomorphic to the metric geometry of Birkhof 2 nd to real'Caitesian geo-

metry. This question .is discussed in (14) . a
. lb

Exercises 2-5 (continued)

15 Assume the archimedein postulate and the Cantor-Dedekin6 postulate. Let

AB be any segmenti, and let X be the length function for which AB is

the unit. Theri (Exercises 12, above)- corresponding to every positive

rational number q , there ip a uni4ue point Qc Al 2 such that

X(AQ) = q . Let r be any positive real number,. Then it is a simple

property of the real numliers, that there exist sequences of rational
..

1
numbers.(x.), (y.) such that. for each i 2 x.< xj.4.1 5 r ;

y. > y.
1+1

> r ; and y.
1

--x
i
< . If (X.1 ) , (y.1) are corresponding,

sequencesofpointsof.5'2withx(AX.):. x1 , X(AY
i
) = y

i
, prove

that

(a) X
i+1

Y
i+1

c X.Y. "for each i .

. 1 i

(b) XiYi is a single' point, P

(c) x(AP) r

(d) X is onto 114- .

16. Prove Theorem 2-5.4(i), that olicr 1s always (i.e., without the assump -

tion.of completeness) a multiplicative subgroup of R
+

.

17. Prove that 43 is always closed under additi42 and therefore an

semigroup.
4 .

18. Provelfheorem 2-5.4(ii), that 41 always contains the positive surds.

19. We can use the ratio operation 9: x D -*R , and the result of Theorem

25.4(iii) tookfine a "scalar multiplication" of elements of D by
+

_elements of the "semi-field" 41 2 as foIloWs:, if c(a1,a2) r , define
-

rd2 = di .

a

-
148
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(a) Show that this scalar multiplication is properly defined
AO AO

exists; and is single valued) for every r e 0 , and every d e D ,

and satisfies

(i) la = a ;

(ii) (r1 + r2)d = rIa * r2d ;

t

'(iii) r(d1 212)yotra1 * rd2 ;

(iv) (r1r2)a = r1Cr21)

(v) for every a e B., r1 > r2 if:a4only if ria > r21

(vi,) for eve r e 0+ , al > a2 if and only if ral > rd2 .

(b) If the Cantor-Dedekind completeness postulate holds, tl4n :e = 13+ ,

and the /scalar multiplication is defined for all elements of 11: A,

Scalar Muftiplication'in'The Domain; and Common Scientific'Language. We
. .., ...

point out that the scaler multiplicationis only defined, as a single,xalued
/ .

,.

operation, forequivalenCe classes in D Howevr it is frequently,liseful
. ,

to represent:equivalence classes by particular elements from those classes,
4.

and write, for example, d1 = rd2 , when 14)(01,d2) = r . We, do 'this implicitly,

in such everyday language as "this stiCk:1,s'three times as long as that one ".'

The existence (by assumption, or proof) of a scalar multiplication,(by positive

real numbers) for the common physical measures, also underlies such everyday

usage as:,

7 ft.I- 4it. = (7 + 4)ft. =.11 .

For if "ft,,,Nis just another nape for a "unit" class (say a) , this is just

the scalar multiplication property

-7a = (7 4. 4)7i = lia .

; 4

Other common statements which you can readil/ interpret in terms of this
%

seater multiplication,,are:

1 ft. = 12 ins.; I!;.. ,

,
8 ft. = 8 k/2 ins.) = 96 ins.;

, 3(7 ft. -1 in.) = 21 ft 3 insA

\
But we are not yet ready,to interpret the ,!;multiplicaViOri" represented by the

statement:

1.1

I.

.4C*

rft. x 4 ft. = 12et.2 .

141 4 9
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1

We have dealt with the question of length in synthetic geometry in con-
.

siderable detail, because of its inherent interest, .because -there are some

facts involved (partiOularly questions of range) which do not seem to be well

'known, and because the amount of worti k needed to setup mathematically based

the axioms-of synthetic geometry, is not

an alternate treatment in (14) , which

length and 'coordinate functions from

generally appreciated. You can fihd

' uses a least upper bound property instead of cuts. The total amount og worth

involved is about the same.

Links With Other Parts,of Mathematics. We have shown that the domain of

the lekgth functions (i.e., the set of all segmentS) can beAgiven structure

which leads to the ordered semigroup (5r* ,<) . Because the order structure

can be defined in terms. of the join operation, we can regard the order struc-

ture as secondary, and concentrate our attention oh thd semigroup (B,*)
We also saw that 0!scalar multiplication" could be defined in I) , first Iv

positive rational nuilliigral.and, eventually, by any number, in. , the common
!-

range of all length functiOftr The set EP is,a sort of "semi-field"; i.e.,

a gioup under multiplication and a semigroup under addition. Theset 0 of4

real numbers which consists of the elements of V : their negatives, and zero,

is an ordered field. If the Cantor-Dedekind completeness postulate is assumed,
then cr

+
R
+

, and 4> = R , 4

If you are familiar with the notion of "a vector space over,a field;,

the,'structure of D should remind you,of the structure of ectOr4pace,

except that

ot

(i) D is only a Ailigrpup, and not a group, under the join operation;
-

(ii)- the associated tcdlar system is not a field, Mit only the .-
.

field" ' of all positive elements of the ordered field ..v,

A structure which is likd a vector spape, but whose associated scalar

system is only a ring Z , is balled Z-module .0 This suggests that a suitable

name for the structure off' p , with respect to the join operation and the

defined scalail multiplic!itibft, 'would be
,>43

-se odule. If completenessAs .

.1
assumed this s then an R

+
-semimodule. We assume completeness in what.

follows.

Chi
.--- ...

For p.pector-sliace-like, but more 'general, structure, the notion of
1 .

line4rfunctional can' be defined in the usual way as s funotion-ento the
i

' associated scalar system, whicA preserves "dddition", and scalar products; and
.

,.. . - ...

weitan easily show-that the. length functions are just the linear .functionals
t

1
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for the R -semimodule -C* ,R ) . The set of all such linear functional
r ,

(i.e., length functions);is the ratio.scale ;A , and this may be:givis a

"dual" structure in thegem,way as for a vector spacq..-,addition is Tigt
i^'-,..',, ,. : ,.z.' , ......,,: .-4'.'" * ______:_____

functional addition, and the scalar multiplication in A' is just that which
1

,isAefined for real-valued functions generally. In this way the system

(A,+,R ) Is also an R 4emimodule, which is the conjugate, or dual,of

(5,-* ,R) . This is probably the simplest example of the concept of dual

space in relation to linear spaces. ,As every element of 15 is. the unit of
oo

some length function, we therefore see that the well-known "duality of Nilo-
.

auk units' in relation to ldngth measurement (and, of course, other

ratio.acales) is ,just a very simple example of the standard,4uality of linear,

algebra.'

If 4>
+

is a proper subset of R
+

a.scalar multiplication for D by ,

all positive seal numbers, is not defined; but we still regard length functions

as additive positive. -real- valued functions on 15 In this okse the set of

all length functions i6 a° kind of geneiraized dual to (5 ,* ,c:()+) : In

general, there will be an isomorphism of (15 ,* , C.+) into the dual space of

( + ,11+)a,, and this will be onto if le, =11+ ; this ipomorp is defined

.just as in vector space theory: d -4g , where. g: R s th= linear

Lunctional such that .A(X) = x(d) .

# , Remark Concernini.ynits and Scales. Both in the empixiical treatment of

length and in the mathematical treatment, we ended up with a set of admissible

length ftinctions, any two of which are related by composition with akpositiye,:.

transfprmation. Thus, if X1 , X2 are admissible, functions, there

is a positive real number, k such that X2 = kkl Therefore, for any two

elements x , y , n the common domain of X1 , X2 we%have.

t, -": x2(x) X2(Y)

7(7 777 k

and therefore .

X
2
(x)

A
!X

1
(x)

T-(')t__2 1

9

, ,

ComTrsely, if Xi and X2 are any two functions with a common domairkalid

'with positfve real,values, such that

7153
84
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for every pair of domain elements ,x

so that 7.2 -1

This almost trivial use of

numbers a,b,c,d, =

sets of. measure.functions which

r-

( )

-x 6')2
I

-

X2(x) >.
2(Y)and y ; then =TT - = k > 0

1

tke simple fact that, fok positiie real

if and only if ! = a , is important. for all

are related by positive similarities (i.e:,

which are ratio-scales, or Similarity-invariant,,in terms of thz4assifica-'..

tion suggested'in Chapter 1)>--N4t is this relationship (in either form) which

is used in all simple calculation involving changes of units and scales.

You, might find it useful to verbalize each of the two equiValenforms

above:

1
(x) X

2
(x)

(i) 771 TT7T
M..

measures of any two

(This number is, of

(n)

can

x and y .)

(x) X
2
(i)

K7377 -5.7E7 '

>110.

be expressed as: the ratp of the length'
.

..

objects, is the same
/

for all

-

length functions.
.

course, the'rstio, or ",relative magnitude", of

can be expressed as: ) the ratio o,.thAl length
k 4

measures of an object

same for
4
all objects.

of the two functions.)

4
114Ur_tvo,giveh lenigth.functions, is the

(This-common ratio is, of course, 'the ratio

o

The equivalence of these s-rOpmepts for similarity-invariant measures
,r4

0 . .\ :, .

may be summarTiedas: meaSure functions (on the same domain) are related

by positive similarities, if and only i,f they ",preserve ratios ". In Other

words, (as pointed out earlier) there !s e'natual 1-1 correspondence gg tat,,tycorrespondence
I-

' koperations and ratio scales.
-4;

) "

it ".

,

.>
' ' .-**

' Ratio,Operations, Ratio Scales, and Scalar Multiplication. We have seen

above that all of these ideas enter into a theory of "length !' , andtbat there
)

*are maaK;pnnections between them. TheNsituation is,similar for the other
4

... elementary "'scalar "_ measures of the Ithysical sciences, so it might be useful44*'
to spend a little time, looking the relationship of these ideas a little

.

more-
.t

closely.: , t,.
- ''''-. All.
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In the framework of classical geometry (augmented Wtlie a rchimedean
t

postUlate,and possibly by the Cantor-Dedekind postUlate.) iwe were abletto, ..
; t.

1

introduce the basic ideas about 'length", entirely0 in terms. of the axioms of
.

ti

1

2.-51

'the geometry. You will,recall that we defined a domain structure of equiva-

lencelence (just the postulated congruence relation) and a

"joining", or "combining" domain elements (segments).

structure on the set of equivalence classes of'domain
.

tions we?e defined as those which, in effect; preserved this structure; In

the probess of proving theexistense of length functions, we established an
A

additive ratio operation (suitably related to equivalence) and constructed

lenth fUnctions from this ratio operation, by using "ratios" with.respect
.. .

to fixed doMain elements as units. We weye able to sho that'all such func-

tions were similar; that any fUnction similar to such action was also a416
....

. ..:length function; end that 5ny length function must be siiilhr o''ktcla a fun

tion.- Thus we proves that the set of all length functions is a ratio atale:.
f . -

54
.

We alsosaw that we could work.elther diregtly,from thetrat operatioa, '
07%

binary operation of .

This led to a semigroup

elements. Length func-

4 ..,

or*from the derived ratio scale, to detine,a'"scalar multipllat &eion" of twain
. ^

. .,7

classes-by positive real numbers, and that the structure of the set of, equiva-
.

.

fence classes of domain elements was then an R rsemimodule: (Or, if we did

' .not assume completeness, a sort of 'incomplete" R
+
-semimodUle, in the sense

, .0 ...

.

o thataiarmultipleswere not always defined;,-bvt, where-defined, we had the

properties of a scalar multiplicaO.on. When we now lookeeagainjat .
, .. ,

40
t

usua

,our le
...U...4-e,

funttions, we found that they had the kdditional prOperty (not .

actually required by their definition) that they also"preser;ied" Scalar
% . .

,
multipliAyion, in the sense that X(rd) -=r4(e1).., Whenever the scalar product

...

rd vas defined.
..

.
.. . .

In *
.

t 'construction of a SiiitahlelmeaLre tkjeory'Bo amparticular.,
P,

physical "attribute", we do not usually/have suSh a well-developed foymal

(dViomatic) system such as geometry, to klee as a model space. The questir5h
. , c

.then'ari4s.41 to ha sort of a 4boretical.acture we should -iii'sUme as a'J ., ,A .t.f . %

result of empiri al evidence. In proptice it is. use 41 of the
.. ,

..,. , ,..-.
... .

..,

rdlated ideas of ratio operatio s,"1.-Nicetecles04.d
,calarmultiplication' -

.' s

..

= but our Ai)thenceswith "lengt suggests tliy we do)pot need to assume ail Y1
,

of these ideas directly as they are certainly npt
inclapinclen.

.if we assume
1.7

p t f 0

some of themllen vie can define the others and exhibit their inter- relation-

,

4.4. .....

ship in a mat4ematical framework. .
. .

I -,;,.,; , ,

.

.... I
.

In any such approach, we usually assume that we have empirical.procedures
r ,

\

which correspond to the following assumptionis; ,

.' ..

.

.,
.

Di9 6 I

.....

.15.3
, . J.
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(a). There exists an equivalence relation on the domain with respect to{,

theatiribUte in question.
,

(b) There exists a binary operation of combining domain elements, whioh

carries over to equivalence classeb,and which gives the set of such

classes a structure like an abelian semigroup, but not necessarily

"'complete". (There,are empirical /philosophical problems concerning
1

',closure.)

(c) There exists an order,relation, which also carries over to equivaL

lence classes, and which is suitably relate8 the assumed'hinary

operation.

(d) There exists a ratio operation which is properly related to the

equiyalence relation, ;which is additive, and which (because of the

connection between "addition" and order) preserYes'order. (In the

establishment of this ratio operation, it is highly likely that we

shall have, introduced asaalar multiplication by,positive integers,

and possibly also by positive rational numbers.)

At this ,point we have aiough.er;sumptiorti to define the relevantmeasure
.

functions (asfunctions with values in R
4
., which respect equivalence and

which are "additive") and to prove their existence (by direct construction

from the assumed ratio operation, exactly as for length functions). We can
,..

I ; .$ . ,

c
alsdprove, as for length, that pan otleftwhioh issimila7tbone..444

.
ined

from the ratio operation, _will be a t 6-4ieasure- funttion, -but we cannot

prove the converse (that all suitable de sure functions are similar) unless -

. ,.

w make some further assumptions. One farm of such an assumption (which -Would
i ,'

leave natiaipd to Ire) would be to assume directly that there are no other

suitable measu &notions than the set of those functions ihich are similar,,
'; : .

to the functions' yhich we' obtained from _the assumed .ratio operation. That

is, we would be assuming that the set of measure functions formed a ratio

.,.,

This conclusion could be reached in another way, by first'intrOducing_ .

the notion of icalar:MuliPlicatianinto the domain, and thenmOditying the .. 1
-,,

-A,

definition of our measure functions, to require that they "preserve" scalar

murtipltcatiorSOs well as being additive. In this appreigich,ithe basic*,. ,.-

assumption it that of an additive iiiio operation, from which the rest -

`follows.`follows. We sketch the steprtriefli, leaving-iou to fill In such details
. ,,

.as have not been provided earlier in this chapter:

1. Assume that we have anadditive ratio operation

for a

p

a . 0
set A , which has a binary operation Of "combination", which we

denote by "*" .



A

2., Define (or assume) a relation on A , such that
,

/

-only if 1Aal,a2)/=

3.. Prove that
'

(a) - is an equivalence

(b) if al ,,a2

(c) 'if

a

re ation;

, then'

p(a1,a2) = p(ai ;

ai ai , a2 at a3 » a , then

p(a1 * a2 = p(ai aL ,ap;

nd (c) imply that p. determines a corresponding additive ratio

ion on.equivalence ;lasses].

Int oduce a scalar multiplication in the set A as follows: if

32,g,
a') -= r , defile rg2 = al . Then prove that, where defined,

scalar mul9.12IiNtion has the usual properties; i.e., (i)-(iv)

fExeroae?Zt'1
.

.19. .f

5. i-fIne a suitable measure function. f : A -.;1R+ to be a function which

not only preserves equivalence and is additive, but which also "pre- ,

serves" the scalar multiplication in the sense that f(rg) = rf(g) .

[Here we use the same,potatipn (f). for the function_on A.and:for

.tie derived functionlbE ~A .1 ,

, 4

that those(functioks which arejaerive4 directly from the'

(by fixing .E7'.a.5.infil, class as "unit") satisfy all of the

6.
%
As usual," prove

ratio operation
- .

reqkremerlts of 5 ;and that -Mies% functions are all similar.

is any function of necessarily derived from the

ratio operation) which "preservesth.e...Acalar multiplication; then,
s

for,,4113";--T_5 A..7;51P11d fixed ao E A, let_ p(a,130) = r

7. If now

and i

f(a) = f(rao= rf(a0)

41

where f
0

is the mess

r = pta,a0) = f0(a) .

scrthat f is similar

vtiff(a )

0 0 '

re function forlphich

at is--

= (f(a0))f0

to Thus there

f (a).

1 1

.Then = ra
--- 0-

a0 is.'the unit, So that

-

are no other measure 'fVictions

,



e

in addition to those which belong to the uniqte ratio scale; which is
determined by the (similar) measure' functions_which have units. [As

efdre, we ean easily show that all of these functidhs are additive on '

We,remark that the preservation of scalar multiplication thus shows up
as a'strimger requirement than the preservation of "addition". In the fr e-
-work of olasical geometry we were able to show (by rather tricky argument
involvi4' the topological completenesi of the real number system) that ad
tivity implies that scalar multiplication is p esery d; but where we do not .

havOa formal fraMework in which to carry out suc, a proof, it is Probably
,simplest to require the presei-vation of scat multiplication as part of the
definition.

7,.
- 0

4

An entirely equivalent approach (the difference is essentially linguistic)'
.04is to require the preservation of ratios: if fl , f2 : A -41i

+
are meagurejfunc-

tions obtained from an additive ratio function, it is trivial to prove that for

any al , a2 in A ,

f
1
(a
1
) f

2
(a
1

)

fl a2
al a2

We could now require of every measure function, A -4R , that, in addl-
..

tion to- preserving equivalence and being additive, it preserves ratios in the

sense that

13(a 1) OJ

FE-1
al

ak
2 .

IP
,.

From-this assumption it is easy to proe that g must be similar to f
1

and
f
2

Remarks:

11. Vg emphas'iie that,_intunthematical moderelating to physical meisu4emen

its usually assumed (often implicitly) that a scalar multiplication of

domain elements i8 defined for all r e This is equivalent to the

assumption that each measure function isOnto.R , and to the assumption

that-the domain is tul R
+
-semimodule.

2. In the previous sectionye commented that a ratlofunction was related td'a

scalar multiplication much as ordinary number division is related to number,.

'multiplication. We can now make this a-little clearer, ' In the above,dis-

'cussion we showed how an additive ratio Operation determined a scalar,
-

multiz
v

'plioation. On the other hand, if we have ak,notion of scalar multiplication
,

,
,

15215
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(by positive real numbers) in a set W-, then we can define a ratio opera-

tion in (not necessarily on) A , by defining: p(al,a2) = r if al = ra.

If we assume that every element in A is some positive scalar multiple of'

.
every othe"r element, then we can show that p is a, ratio operation Jan A

in terms of our definition of ratio operation. [You should-prove that the

cancellation property follows directly fromthe 'scalar multiplication

property r
1
(r
2
a) = (r

1
r
2
)a .]

Length in Cartesian We have already refeM'ed to real cartesian

geometry. This is usually develope Out.of synthetic geometry or metric geo-

metry, by proving that a 1-1 correspondence (a coordinAte function) can be set

up (in many related ways) between points of spade and the cartesian product

R x R.X R . When developed from synthetic geometry, the range question is

generally slurred over, but, it is.usually assumed (implicitly) that a co-

ordinate function is onto. This equivalent to the assumption of the archi-

medean and Cantor-Dedekind postulates. This difficulty does not arise in the

metric approach: the postulated coordinate functions fQr each line are onto

R , and it follows easily that a coordinate function for space is onto

RxRxR.

If a coordinate function fOrspace is required to, preserve, distance Un

terms of a postulated or constructed distance function for each line; and the

usual distance function in R x R x R) , then it can be shown to be unique up

to a ,rigid motiri of R x 11-5Z R

Of course cartesian geometry e e ablished

appeal to metric or synthetic geom , y defining points to be ordered
4

triples of real numbers in the cartesian product R x R x4R , with distance

defined by ,

--"e

Yl)
2

(x2 Y2)
2

ritr.(3 Y3)
2
)

1/2

-cwhere X = (
V4$=--.....,

,2,t) 7'heusUal7<structuies of geoMetry- '

(lines, planes,vsei,1,.. , .7. 7,1 l',:f e etc.) ctinbe defined purely algebraically,

and it can be sh(Ms; it thete-satisfy the postulates of both metrie an
,

_..--

li. - -...-

. - ..s

synthetic geometry, v'iti. a program is only-found in` the more'advanc

veryon analytic geometry, te.11 very similar treatMent iausTaily giVen__
- ---- 1_7 \,

algebraic temas_in el mentary,bodks!On iinetraIgebra, in Nhich the.ppacs ,
\-, -

studied are.finite dimensional Vector,spaca',.4Lvolgvvreal field.

et*,

1,

i5'
1 5 7

's
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Len&th and The Classification of Measure Functions. We conclude this
section with d few remarks concerning the relationship of our treatmentof
"length", to the scheme for classifyihg

measure functions which we sketched
in Section 1 -7. In particular, we want to remind you that we have not
attempted to define the concept of length in any formal sense; and that the
definition which we adopted for "length function" wEls', to a considerable

4tent, arbitrary.

Recall that we have assumed that there-is an identifiable set of elements
(the domain) which possess the attribute of length. In a formal system, like a,

geometry, we could identify this domain prepsely,:hut, of course, this identi-
. ,

fication is only "relative., as the formal system itself is built on undefined
terms. (111n the %ength domain we were able to establish many structural; elements:

A

an equivalence relation; an order relation which carried over to equivalence

classes; an "additive" join operation which yielded a corresponding binary
operation on the set of all equivalence classes, and which was'also related to
the order relation;,a resulting operation of subtraction in (but not on) 'the
domain of equivalence classes; a ratio structure; and scalar product struc-
ture. All of these related structural

concepts had countdrparts in the posi-
'tive reel number system, and the simple definition which we adopted for " length
functions' fit should be (or yield) an addl1.We function on equivalence classes,
with Values in R }) eave us length-functions which actually "preserved" all
of the("length structure"

of'the domtin. 'Moreover (witipthat appeared to be
justified assumptions _in the empirical case) the -set of all "length:functiOns"-

..

turned out to be a rptio:scale.,:1,
J

'let us temporarily call our earlier length functions "ratio lengthgunc-
tions". We,Might then (in. the spirit of Section 1-7) define "nominal leffiTrolle

--functions" to be.functions on the length domain, with Values in R (or .

possibly everVin R) which preserve the equivalence relation. (I.e., Zhich,,.
give the same value to length-equivalent domain elements.) We could define

214"ordinal length functions" to be those nominal.le,Kth..fonctions..which also
,preserve the order relation. And we could define "difference length func
tions" to be those ordinhl length functions which also preserve the dtherence-
structure. The "ratio length,funttions" are then those "difference length'

functions" whicjq-iare "additive", and we have a hierarchy of types ,of length '
func'tion. In practice, of course, we are only interested in..the smallest set,
the ratio scale. The functions in this category have all of the properties of
those in the "weaker" categories, and more. We certainly would 'not claim
that our definition of "lerigth function", was, in .any sense, the "right"
definiti6n. All we assert is that, on the basis of considerable.experi.ence,
it is 'probably the most useful.
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. , t
With suitable,assumptions we could investigate the structUresof the

several categories of "length functions", but, as these are of no very great

interest, we shall not do so. (In essence, they are those functions which can,,
1

.

be obtained from length unions by composition with suitably defined per-
-.../ .

mutations, strictly mpnotone functions, and affine functions.) We shall have
..:

more to say about the last-named category in the next section.

2-6 Wordinate Systems

A coordinate system is usually a function (or a set of functions) which

measuxes,ome.:_attribute.of the space to which it applies. Thus coordinate

systems cap be considered to be measure functions in the general sense.

. e
Even for the simple sptvet: of'elementary geometry, there are many dlr-

.--
,

ferent kinds of coordinate systems: cartesian coordinates,' p coordinate,

cylindrical coord' tes, spherical' coordinates, and so on. All 0 these have

at least o hing in common: they serve to "identify" or 'locate" the pqints 'f,

of the space., For this purpose they are usually'1-1 mappings on the set of

points of space, into some appropriate value srace; in general, this is not
A

simply the real number system.

4
not our intention to undertake a thorough study of coordinate,

systems, but we shall take a brief look at one of the simplest of tliEse, from

the point of view of measure functions which we have adopted in this book.
_ . :

Specifically, we shall take a closer look at the notion of a coordinate sys-

tem for a line,"a notion whi'oh has already been montiohed several time-a!,

In the 'Irietric'treatment Of geometry, it is postulated that each line

shall possess a coordinate syAem. This is defined, to be a.1-1 function
. .....

from the line onto the, real numbers, 'which is related inra specific way to

postuiated*distance function for the space as a whole.

NJ(

.

In synthetic geometry, no such distance or coordinate functions are

ostulated, by,t we,have shown that the congruence-betweenness structure, which

is postulated, enables 'us to prove the existence of length/distance functions,

and' suitably related coordinate funCtiOns; and that, provided that we assume

the archimedean andthe Captor-Dedekind postulates, these behave as postulated

metric treatment.

' Let us look briefly at the notion of a.coordinate function for a line

(i1 synthetic geometry) from the measurement point of view. Let, /' be a

fixed line, ,-First of all,. we should expect that any suitable. coordinate

function -.should serve to dame, or identify, points Of, the line.' (I.e., it

"° shauld'be 1-1.) Secondly, the postulates of synthetic geometry include a .
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notion of betweenness: we would expect that's suitable coordinate function

should preserve this. Finally, certain subsets of the line (segments) have a

congruence structure, and we might well expect that suitable coordinate,

function should "preserve" this, in some way.

If we think of the real number system, R , as a possible value space

for a suitable coordinate function, for 2-, we can use the structure of R

to formulate the notion of a coordinate function: an admidible coordinate

function is a function f : -4R such that
4

Si) f is 1=1;

(ii) bbtweenness of points on 2 is preserved in the sense that for

A , B , C. e 2,A-B-C=4 f(A) f(B) r f(C) , where the

notation on the right has the obvious interpretation. (Observe

that, as A consequence of this requirement, the image under f

of a segment AB must be contained in the closed intervef

[f(A) ,f(B)] of real numbers);

(iii) for segments CD e 2 , AB ; 7D If(A) -f(B) Iwif(t)'-ftD)I .

Notice that all of these requirements are formulated'within the postulated

concepts .of synthetic geometry: they do pot, involve (explicitly) the concepts

- of distance and length.
,

From our earlier work, we knows-that there exist functions which satisfy

these reqUirements: as we Am earlieilt if we go through the process of setting

up a length function, 'is. ; D --)R , on.the set D of all segmentS'of space,
6-- _

then we can use this (in infillitely many ways) to set up "coordinate functions"

fx : -"R for the line 2 , antl these functions can be shown to satisfy the

,requirements (i) - - (M). Moreover, for each fixed fx we can obtaln other

suitable (i.e., satisfying the so-called ruler postulate) coordinate functions

by composing fx with rigid motions.

- We can verify directly that, if

in the sense that,it satisfies (i)

x'-)ax b.(a ,b e4R ; a = +1 ).

f is any admissible coordinate function_

(iii), then the leonction gf obtained-

by composing f with any aftifie transforeation

, g x ax b (a, , b E R .; a / 0),

'is also admissible. It is natural to ask, whether or not all admissible co-,

ordinate functions can besobtained in thig way,.trom the particular coordinate
I

fUncti6ns;' f. ;which were derived from*length functiOns.
. -

Let us assume that oUr-spEice also Satisfies the anoilimedean and the
' )

Cantor-Dedekind postu\ lates. Then each. fx , and each gfx is a 1-1 function

from 2 ohto R . I now f is any other admissible coordinate function
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(not necessarily constructed fronfa length functi6n) then the composite

function.

h = f f
-1.:

R -4 R
gm.

is a 1-1 function which preserves betweenness, and which preserves equality

of diffrences (i.e., if a,b, c d,et, with la - bl -?di ,

then Ih(a)- h(b)I = Ih(c) h(01 We comment that the absolute-values

could be dropped, because the preservation of betweenness ensures that his
0 MOW

either mono tone increasing or monotone decreasing; thus th4 above condition
4,= .`!"4is equivalent to: if a - b FtyTa' -:.d, then h(a) - h(b) ='h(c) - h(d) .

es

If you now go back totheProof of Theorem 2-2.1, you will find that

these properties of h are sufficient to ensure that h is an affine trend-

formation of R . 19 other words, with the assumptions that we have-,,made,

a coordinate system for a line is an affine-invariant measure fun 7

ion, in

terms of the classification of measure functions which we descr6ed4n Chapter

1; and every admissible coordinate system can be obtained (by composition with

a suitable affine transformation of R) from any particular coordinate system,

f
X which is derived from a particular length function, X .

In some measurement situations involving affine-invariant measure func-

tions, we wish to rtrict the admissible functions to those 4 which, in some .

sense, preser*: ientation , or "direction!'. We shall discuss this idea

briefly in, e neXt section, but we mention here that, if such an additional . 1

'requirement it made, of a coordinate function, then the appropriate composition

group'of!functionSis ih6ositive affirie group of those affine transformations

at-

(x-)ax b) of R for which a > 0 .

This is as, far as we wish to g )in this direction at the present time'. We

shall 1.etUrn to the discussion f coordinate systems again in the neA chapter,

in connection with angular coordinates and polar coordinates.

7 7 _

Transformations of Cdorainates and of ptomain: Scale Models. This seems

to be an appropriate place to say somethIng,abouttransformations ofathe domain

usually called point transformations).,'

about "the related questiOn Of,scale,mod

4 A
44et us 'first take the viewpoint that our space S is the space of .metric

geometry, and that p (cartesian) coordinate system for S is a 1-1 fundtiOn

p : S x R X"R (= E, say)

transformation of coordinates, and

The, discussion is quit0.451plete.

.

which is related to a distance function in S at' follows: ,Let

-X F.. (xl,x2,,ic3) and "X"= (yi,y2,y3) , be points in and let e :E x E -4
;4'

15g
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/
denote the "distance" function in E given by

. .

i
r b(X,Y) = ((x1 - y1)2 + (x2 - y2)

2
+ (x3 - y3)2)1/2

. For each coordinate

functionp.,leta.denote the corresponding distance function, for S ;1 1 4- a
.i.e,, the fuhction.whichis related to the maps pi xpi and 8 , as .

,indicated by the Commutative diagram:

R
+

.
..

We now ask ourselves: :what is the relation between those coordinate

functions whic4i c rrespond to ,the same distance function for S ? Since each

Coordinate function is 1-1 onto, each pair.of coordinate functions determines
i

< '
a 1-1 correspondence on E ; i.e., corresponding to two coordinate functions

pl ;7-2,,, there is a 1-1 oorrespondence .01 : E ->E which makes each of the
,

., following diagrams commutative:
. et

E

Sx

E x E

4

if We are n61,4 given a coordinate function pl Otnd a "corresponding" distance

function, al ,sfor S (in the sense that qi = b(piX p,)..r then our ques-
J.

-, ,tion'amoUnta to disking for-the-set ofthosetransformations
t312 : E -4 E

which are derived from "equivalent" coordinate fuLtiOns p2- (i.e.; coordinate

functions for which a1 = b(p
1

x'p
1
) = b(p

2
X p

2
) .- This set of transforma-..

tions,. which can be shown to be independent of al (i.e., unit-free), is the

so:called group of rigid motions of E . It is fairly easy to, see that these
.'

rigid.mOtions are just those transformations 0 of E , which leave the-
t 2 1/2 --"distance function" ((x - y ) + (x_ - y2)2 + (x3 -,y,) ) unchanged, for1- 1\ . ?

, ) . .

each pair of points Ift-,=%(x1,xec3) , Y = (yi,y2,y3) , of E,4Itat is, if

-0(x) = xt = (xi , xL ,1). and = (yi ,.4 , yp then
fx - - 12.4.fx.1°_ - 12 4. f - 12 ...' t ti24. f t 112 4. f t 112
' 1 J11 ' 2 J2' °c3 3' 6-*" X1 - Yll '-?c2 Y2' 'x3 Y3' '

You can-find details to C7) ..'

"
1

16
58

2
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8,

We 'Can now take a differerit point of view: instead of-looking at
.

changes in the coordinate functions, we ca4, look at 1-1 transformations

(So- called "point transformations". as distinct from "coordinate transfor-

mations ")' of the geometr'c space 'S onto itself, and ask ourselves what
.

point transformations of are " istance preserving". From our earlier

discussion, you will recall tha these are just the congruences (also called'

"rigid motions") of 'S .

20v.

If We have any point transformation S -3S (not'necessarily a con-

gruence), aid a fixed coordinate function p : S --)E , then y .determines in

a naturalway aktransforMation k : E --)E , where 0 = p r (Recall that

all of these fullgtions are 1 -1 onto, so that the composition 1 inverses .dxist.)

other words,: 0 is determimed so that, the diagram below is commutative:
0

S c

I

p
)) E

E

. iOn the other hand,'if 0 is a 1-1 correspondence of E , theft, for each

coordinate, functiori. p , :there is a point transformation r of S which is

determined by 0 so, as td make the above diagrqmcoramutativeA:Thus, each

coordinate funetiol4 p , determines a 1-1 correspondence of the point trans-

formations of S and the 171'correspondences of E . It can be shown that

the'set 4 those ,stmt transformations of S which correspond to 'ale group
1:', -+

of rigid motions 15.:r' E is of p , and that it is the group of
.,.. ,

congruenc 4 s of S .

Supgpse now,that al an 02 are4distarice Ain-et-tons fqr S, and that

p
1 2 , are corresponding coordinate functions, as described earlier, Then

,Oi and "0', differ by a positive similarity, , of' R =kap.) .

.Moreover there is a transformation 0 on E ,°stich that p2 Opi .

follows that, for any X , Y , in E , tr

8(0x2 0y) =,k8(x,y) .

This situation is, pictured in the following commutative diagram.

t

1591 j
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a
1

a2 1* . kJ . .

The
p

set of all tr\ nsformations. Fs deriVed in this way isa group, ca le

the extended similarity group on E . Clea5ly this group contains the rigid
,. ,.

. /
motions of E .

4.

We now turn the picture arolind, and consider the "dual" situation: for

a given coordinate function p , what is the set of those point t4ansforma-
r

tions of S which (as described above) correspond to the extended similarity

group on E ? This is the set (actuallftr group) of those point transforms- N

tions y of S , each of which has the effect.of multiplying all distances'

by some k > 0 . The situation is as pictured in the following commutative

diagram: 4 ll'e
.

4

Qo

A

0

0

d"

./1 to



This.group,of point* transformations of S fincludes the con4rUences)
\''--

is, of-course,
%
the group of similarity transformatiofig of classical geometry:,

. ...

(Similar figures.are those which correspond under a similarity transfOrmation
m. .

.,..
.

. of S .) It can_be shown that this group is independent of the' choice of 'p ; .

:,i.e., similarity is a unit-free eqUivalenie relation.
...

0

, .
. .

. . 7%.....1 .
.

If a
1 '

and a2 = ka1 , are distance functIons for. S x S , and. ' i" is .

a k-fold similarity of S , we clan summarize the above in the following commu-

'tat'ive diagram:
:

04

S x S
al 4.

>R'
A J

k

S X S >114"

al

C- .

Similarity (point) transformations of S have-a simple relationship to

the matter of "dcale" models. We may consider an.object in the physical

?world as mapped, into, S by a "model function". Generally, this ftinction.is

suripresed, with the object regarded as actually being a subset of S ,

rather than being in 1-1 correspondence thrOugh a certain "model fuhctionv,
.

with a subset of S . (Another way'of looking at thii, is toregard'physical

space, with "points" of an object. corresponding to the "points" o
L.--

. space which7ther-"-occupy", aea metric geometry,. That is, physical space is

assumed to have.an empirical structure which makes' it isomorphic to the formal

mathematical system S , so that We may treat physical space as a metric geo-
0

"metry, and physical objects as 'subsets of this geometry.- When this is done,

the length/distance functions of the mathematiCal system are usually given

the same names (i.e., :inch) focit, meter) as the empirical functions used in

measuring the physical distances involved. It is.podsible that this, suppres-
,

sion of the"model function" is partly responsible for the common misconcep-

tion.that physical space actually is a metric geometry.)

For the sake of simplicity, we suppress the "model", function and treat

physical spaCe as if it.is a metric geometry, S . We may then describe

cal objects as being similar, if there is a,point transformation of, S

'the type which we have called'ak-fold sivallariY, which maps 1:Lne onto the

'other. The result which is pictured irAhe last commutative diagram, then
,

436 i5
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states that the effect (on the length measurep4'sn object) \f changing-the

length scale (i.e., the length function, not the unit) by)s fsctor k ,

0 indistinguispable from the effect of's k-fold similarity oln the domain.

It should be noted that our definition of similar objects is broader than

the common wage of the term "scale model ". For the latter there is usu$11y

an additional restriction; shat "orientation" be preserved, to rule out those

similarities which change left and right handedness. The distinction is, of

course, the same sk that between rigid motions (Congruences) in tre mathema-
.

9 -

tical sense and the corresponding more restricted physical idea of a rigid
a

motion, which permits only those transformations which are composed of trans-_

lations and rotations.

While the above discussion has been concerned mainly with length, there

are important relationships between similarity transfor mations of domain and

o thercommon measurement functions, including, of course, angle measures,

area, and 'fume. We turn to this question later.,
I

2-7 Directed Segments, Orients-Mr1nd Vector Measures

,frare many purposes for which the length functions which we have

described'are, in a sense, too crude. For example, given a pair of (different)

points A ) p , in space S we might wish'to have a concept of "distance';,

-which distingUlshes ,between the "distance" from A to B , and the-"distance"

from B to A That is, wemight look for a "distance" function, on S

Which, preserves the, distinction between the ordered pairs (A,B) ; .(B,A) .

Out first thought is that we could-do this quite simply, by defining one of

i these "distances" to be the negative of the bther: i:e., by,using as izalue

space the whole real number sy tem instead of ust Ro . This immediately

raises the question as to'which of the two orders should.get the positive

"distance" value, and which the negative value; and whether or not there is

some useful way, of making such a choice "uniformly" throughout space. This

imm ediately involves us questions of orientation, whichwediscuss briefly

below: ,a full considers n of orientation is beyond the^scOPe of this bobk.

Instead of considering ordered pairs f points, and :oriented,distancee',
4.1 ,

'let us look at the equivalent situation with directed segments. A directed

segment s a segment, together with an ordering for its end points. (Other.

1eluivale t definitions could bq given.) Thus each directeId segment determines

. , a unique segment, but there are two different directed segments. correspend-i
.,

toeach segment. The notation A is often used )4 denote the directed
- 4,
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'segment (.T,(A,B)) , but we have already used-
.

2-7

he notation, ,A to denote a

ray. We therefore adopt the A,B to' den
, the'directed segment nfrim

---> ---,,
.

-A to B" . Thus 'A,B = CG if and, only if A d and B = D .

-4If we now ask whetha'
th6e0Si

are functions, f , defined on the set D of, ...

all directed segments, and with values in R , which have the properties:

,(i) f(A,B) = -f(B;A)' for every A,B in -V.;

)\ the functlon
f ,derived from f by defining

f
(AB), = (f(A,B) I ,

is a length function for the set D of'all segments;

then the anSwer'is clearly "yes": we can take any length function Xf on D ,
.-->

and make an arbitrary choice of value, (±K
f
(AB)) for ft , and then define

-1=4,

f(B.A) to be -f(A,E) . Of course this is not very satisfactory, bit it

emphasizes that there certainlyexist`appropriate functions if we ask no more

frot them than that they satisfy (i), (ii) above.
, . 4

In addition to (i), (.i), we might look for other conditions which we

-4-epxad like such a function to satisfy. For example we might ask that:
0

for all directed segments on a given,line, the value of f

should have the same sign for all directed segments which "point

in the same direction" (see below); ,

(iv). for"all-directed segthents which are on pai4allel-lines, and which .

.

,
5,poi t in the same directidt", f should luore'the same sign? .,

ri,alldireeted segments'which are "sufficiently close together",

et, sho

If (V)

.have thqSame sign. JCV.

,
*...bNae4lia N -x--shotacl.fave

sate sign to dtrec -segments A,B , A,C , such that the angle LCAB is

"sufficiently small", then, intuitively, this ,condition cannot be"aatisfied

along with condition (iii). For (intuitively), the directed segment .A,B.

could then be continuously rotated, without changing its sign, to the position
--* --4
.A B' "opposite" to A,B ; conditions (iii) and (i) would then require that,>
f(A,Bt)w= = -f(A,B) , while cpndition (v) would require that

f(A,B') = f(A,B)

Condition (iii) (alone) can certainly be satisfied: all we need to do is

to show that the set of all difetied segments on aline can be-partitioned
, .

. into two equivalence classes by an appropriate relation-Of "sate direction";

see exvicises'below. Condition (iv) Can also be satisfied,
a

ied, alOng with condi-
./ ' s. .

tion (iii). - 9
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Exercises 2-7

1. Let A,B and C,D be directed segments on a line i . We'define a

relation t on the set 1
'

of all directed segments on C , by .

--> 1> ---->

A,B' C,D if and only if AB-11-CD is a ray.- ProVe that 1' is an
-4

-equivelence'relation on D ., and that tApre are exactly two equivalence

classes with respect to t .

2. If A,B , C,D are two directed segments on a line i ,

eestulates of synthetic geometry:' see Section a-5) the

C , D ,(at least tiwo of which must be distinct) can be

then (from the

points A

named in an
order Xi , X2 ,X3 , X4 , such that X1 - X2 - X3 - .(if only two

ox three of these pbints are distinct, this must be interpreted'accordd

ngly0 If they are so named, with A = X
i(A) ' B Xi(B) ' C Xi(C) '----> --4 -

D = Xi(D)), prove that A,B I CD if and only if, i(A) - i(B), , and
. '- -i(C) - i(D) , have the game sign.

,
''' - *'v 4 ,.3. If f : i 4 R is a coordinate. function for a line i , and if-.: A,B and

A
---> 4.-

C,D Tare directed segments in i , prove that A,B 1C,D if and only if
f(A) - f(B) and f(C) - f(D) are either both positive or both negative.

A

The two equivalence classes of Exercise 1 above, lead to the concepyof

orientation: we orient the line by selecting one of 'these equivalence classes

Each class iscalled a direction, This there are two possible directiong, and

each is completely determined by any of its eleMents; i.e., by a directed
,

segment.'

If we ch000ng of the two directions, on,a fixed. line i , as a "posie

tive" direction, and the opposite direction as the "negative" direction, then

a function' f : Di -4R 0:).i denotes the set of directed,segments on £)
,-4

satisfies (i) (iii) , can be eatablighed in the obvious way. Moreover the..:
conc dept of direction can be extended to parallel line 1.1.1-a fairly straight-

forward way. We shall not go into details of this extension.
://

10-
Soft times these ideas are used to ascribe. "negative length" to -certalp

directed segments, but it'is preferable not to use the word length cOnnec:

ton with measure functions (generalized length-fulqctionS) on directed segmenttr
It is better to regard the objects under discussion (or, ratter, certain equi-

. .

valence classes of them; under the relation of "same direction and congruent ,

as segments.) as vectors, -and to look for measuretypeions whih are relevant

to the "vector space" structure of the set of such vectors. (In order that
is

this set be a vector space', it'must, of course have-a "null ve#tor" or "zero. . .. ,
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4A
vectoi."; the class of ",degenerate" diredtedsegments A,A providesAhisparti-

-cular vector.) F6r such "vector measures ", the appropriate value pace is
1

es app \s

often a so-called "real euclidean vector space", of appropriate dimesion.
\.

For.the restricted4set of such vectors on a fixed line, the corresponding
./

-s.

1-dimensional vecta spate is :isomorphic to, the real number system, andthis

is why it is possible to have functions like f above, which are linear
.-4

isomorphisms from the,l-dimensional vector, .silace 11:12.1 (whose elements a
.

-9,
i. equivalence classes of directed segments in D

i
) to the real number system.

\

R .

.We do not wish to get seriously involved in questions of vector measures,

which qUickly lead into -questions of. linear transformations and matrices.

(There are many excellent books which deal with these ideas.) We do however

pOini out that our earlier join operation for segments can be appropriately

modifj:ediand that the,set-Of vectors [D
2
] is an,abelian group under this

operation. Moreover (gener) ali4ng thecorrespondibg situation for segments)

there is a 'scalar multiplication" of vecten, by elements from aNappropriate

nunber field. (If we assume the archimedean and Cant-or-Dedekind postulates,

this the field of all real numbers.) These structural properties (an

abelian group which'is closed under scalar multiplication from an appropriate

field) are charactistic of vector spaces. The vectors (equivalence classes

of similarly directecNcongf.uent segments) in S do, of course, form a vector

space, with rector addition, by the "parallelogram rUll", corresponding to
,-*

the modified join operationin [Di]

s-,

2-8 Extension of the Domain fOr'Length Factions: Curve Length

The foregoing discussion of length functions, both from an empiricarand

from a mathematical standpoint, has been confined to the length of segments

and their physical ct!lunterparts. And, even with this restriction, our

disCusslon paid no attention to the fact that the empirical counterparts

of all segments could not, in fact, be manipulated in the way which we briefly

(and rather vaguely) indicated for the -estiiblishment of-empirical length-measure-

_relationships and, functips. In fact; .ethe empirical level there age
n

`important practical problems. to be solved ir4 Aning length functions for a

domain. which Apaudes all "rode. (i.e., the phy

Ee ents)...(These important, questions are properl

and we. do nat. -concern tAselves with them .here, e
. ,

counterparts of all

discussed as part of physics,

ept to point out again that

it is not really possible to solve them in a purel empii-icai framework. For

example, the measurement of very large distances in olves not only assumptions

*

n /

-
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conce rning the bp avibr of' light, but also assumptionsconcerning the nature,
.

of'physical space. These assumptiots usually involve mathematical "models",
.1

and mathematical ideas of distance.

What we are concerned with under thjove heading,lis the_extension of
the doMain of length.funciions fr4iegments and tokeir empirical counterparts,

to include also such objects as piedes of string, highway distahces, perimeteAs
of polygons, circumferences Of circles, and SQ. 4r,...ike again, empirical length.
measurement usually involves, bdth practical queStions and mathematica/oquestions

.

In or o keep the dtscusilion reasonably brief we Shall not discuss empirical

length measurement further; (The mathematical questions which are relevant to
A

the empirical development, will 'be mostly answered in a discussion of the .corres--..

ponding questions of domain extension for length functions in a formal mathe,

-matical system.)

From a mathematical point'of view, the question Of extending the domain

of length functions proceeds in two more or less distinct directions, which

eventpallymake contact again at a more advanced level: one4of these exten-

sions is concerned with-the length of objects called "olgy.es", and the other

is concerned (initially) with the generaliiat4.on of length functions on seg-.

,ments, to a larger class of subsets of the real line. (This is part of the

ubj.ect'known as "measure theory"; see, for example, [11] .) Each of these

eners fles our earlier treatement,. in tho4sense that, for eaaageneralization,

the dom'ofan appropriate measure function inclu4the set of all segments
(or something isomorphic to this set), and each function agrees with one of

length functions defiAd above, their coMmonldomain, the set of all

segments. Anything approaching a fu treatment of either generalization is

beyond. the scope of this boOk, but we can at least give you some idea of the

direction in which each leads.

Broken Segments. Before discussing curves andcurve length in general.'

we consider' the class of broken segments. (These are often called broken lines,
Vut this termin4Logy is not in keeping 'with the way in, which the words "line"
and "segment" are now uses}:) An elementary broken sOgm6tt (where there can be

no misunderstanding, we abbreviate thU term to "broken segment") is a finite

sequence of segments XoXi°, XiX2, X2X3,r ,Xn_iXn , which, in addition
to the "chain" property suggested by the terminology, satisfy the further

.condition that 'each two of them have at most d'm point in common. Clearly a
segMent may beregarded as a broken segment. Diagrams (a) and (d) below

illustrate elementdrYfbroken segments, but diagram (c) does notIJ A
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(a)

2-8

..

(b)

(

1

4.

A broken segment is simple, if the/only intersections of its constituent seg-
,

ments are at the end points of successive segments. Thus (a), above is'simple,

but .(b) is not. Every segment is a simple broken segment. If b is a broken7

segment, we denote by b the set which is the union of its constituent segments.

We consider the ,problem of extending length functions from the domain D

of segments, to the domain DB of broken segments. ,Our natural impUlde is to

take a length function, ,. for D and then extend this function to

defining its value on a broken segment to be the sum of the values of %, on
. .

thetconstituent segment2 We shall s that, in a certain sense, this is the",

only reasonable thing to do: if -w61 et down those properties which we feel

that every acceptable length function fOr broken segments must have, we shall

(. A 167
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pind that the only functions with these properties are those which are obtained
by adding the values of some X on the constituent segments. This deduction
is quite straightforwprd, so we give it'in some detail as a further illustra -'
tiotl .

ofour general apprdach to meastrePquestions: we try to identify a:domain,-
with some structural properties related to the attribute in question (in this
case, length) and then look.:'for functions which have some specified properties
in relation to the structure ofithe domain.-

Those simple properties which we might reasonably require of every length
funcn for broken segments are:

(i) If XB DB R- is such afunction, then XB must agree with
one of our length functions (X , say) on the subdoMain D of
segments. Moreover eacl X for D should have such an exten-
sion to D .

4,,lit

'

(ii) If 13.1 , b2 ) are broken segments, with by = b
2
,then

B(b1
) = X

B
(b
2

)
,

41(

(iii) If , b' b" , are 41piecewise congruent", then %B(lo') =

that i if b' = (bi , ,13:) and b" = (131 , VI")
g.

and there is.a 1-1 correspondence of the segments b! '15yith

congruent segments .i;' (order is not important), then we require
fthat XB(13.) = x)3(101 .

w_......We.wy.aatz,easilY that, if X is any length function for D , and ifv..XB

is defined foreaeh broken segment by adding the values of J. on theicon-
.

stituent segments, then %B. '.sttistles (i), (ii) and We shall prove-

-
the converse. ..,Conditions (ii) and (iii) can be combined to define a relation

on DB : we define b b
2 ,

if there are broken segments 10 b'

with, bl
*

; El ,..E2 .L , suchthat 131' is pieceWise congruent to bL . It

is easy td,rove that ip,an equfralence relation: (Intuitively, broken

segments are equivalent if they have piecewise congruent subdivisions, where

a subdivision is obtained by the "insertion" of a finite number of- additional

'vertices at interior points of constituent segmentX), n
. Lei Y

))3
denote the'resulting set of equivalence classes of.broken seg-J6

416ments. Conditions (ii) and (iii) require that- must have the Same 4ftue
, 4on each broken segment particular eqUili 'ence class, so we may consider

XB as defined on ti .. Congruent se belong to the same equivalenceDB

claas, so we have a mapping -f : t DB . (As before, 15 denotes the set of
congruence lass" of segments.)
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We show next that:

(a) f is onto; i.e., every equivalence class of broken segments contains

a segment;
. .

I

f is 1-1; i.e.,' if two segments belong,to the same equivalence

class, then they are confluent.

In other words, f is a 1-1 correspondence. The ilroor or.N and (c) ts-a

straightforward Application of the join operation for segments:,

(a) If b = (b
1;

b
2'

b
n

) is a broken segment, then (from Section 2-5)

- the join class fl * t2 * *In -is a congruence class of segments,

each,of which.is piecewise congruent undeer subdivision, to b , and

hence equyalent to b . Hence f is oht6.

(b) If two segments are equivalent, then they are congruent, or they

have piecewise congruent decompositions (or both). But a segment

is the join (in some order) of the segments in its decomposition,

and the join operation is uniquely defined on, congruence classes.

Hence the.two segments are congruent.

.11

Now that we know that each equivalence class of broken segments contains ,

*
exactly one equivalence class of segments, condition (i) .requires that if

b = (b1,b2,...,bn)' is a broken segment, and if c is C-Idegment with c b^,

then XB(b) = x(c)- , where X is the length functiod X
B
/D for segments.

40
Since c b c and b have piecewise congruent decompositions. But

/
as we

o '

saw above, any segment is the join (ln%some order) of the segments in its decom-

position, andtequivalent brgken segments have congruent joins. Thus the con-

gruence classes f and t
1

* b2 * * t
n

are the same. Bu ,X carries

'
. 4

joins into s , hence X
B
(b) = X(c).= X(1).) , which is what we set 014

i=1:
1
4

. a.

to prove.

Of course all of this is rather "ofbvious", but we have given it in some ,

(41.

.detail, because the analogous idea ( piecewise pongruence under- cicomposition)

turns out to be very useful in the discusbion of angle measw..Ps ani "gefteralized

angles ". Moreover, there are, very interesting related problems connected with .

the so-Called elementary theory of area for polygOnal regions, and with the

non-existence of such an eiementElry theory for the volumes of polyhedrg.

269
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Rectifiable Curves. The intuitive idea of a jeurve is simple enough, but

the intuitiapidea is.quite inadequate for a discussion of curvegefigth: .ins

order to discuss curve fength seriously, we must first_clarify our ideas about

what is, or should be, a "curve'.
A

Our first-approach to the concept might be-to try to formalize the physi-

cal idea of taking a straight piece of string (a segment) and bendi it (in

space) in a quite arbitrary way, but without stretching or breaking. hat is,

we might t to define a curve as a 1-1 continuous image (see below for a dis-

cussion' of the' notion of continuity). of some line segment AB ,under a func-

tion f which, in saue.sehse, "preserves length". In view of the fact that

the only notion of length which we have to work with, iq the length of aseg-

ment or broken segment, we cOuld'try to convey this idea of length preserva-

tion by imposing a "local" condition at eaciLpoint C of AB , corresponding, .

to the intuitive idea of "continuous deformation without stretching". This

condition would probably take the form that, for each point C of AB ,

a (f(X) ftg.))lim - 1, (see diagram)
X--)C

a(X '

. f
where- a is the distance fUnction ix S , and the limit idea would need to be

made premise.

y 7

A X

I

f(A)

In.view of our:intuitive feeling that "thg straightfine is the sh ortest

distance between two,pointswe would expect that, if f is a "length.preN.,,,.

'serving" function, then, for all X e AB ,a(f(X),f(C)) <d(X,C) ; and that,

the ratio of these distances should be arbitrarily close to 1 when X' is

close enough _to C . This suggests that we should formalize the above limit -

by the requirement that the least upper bound of the ratio of these distances

shOuld be 1 . In other words,summing ue, this line of thought would-lead to

'170
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1?-1-NiOP'org-cteas a -1 glr't-inuous image of some lin

under a function ch..satisfies

°

for each C e AB

la(f(X) f(C))
(X E AB) 1 ! a(X,C)

2-8 r

At first,you might think that this approach:w1U1A be very useful, as it

seems to correspond exsCdtly to our intuitive idea of obtaining a curve by a

length- preserving distortion of a segment, and it appears to have the addi-

tional advantage of leading directly to the definition of curve length. (For

such a "cure", we would, naturally, define its length to be that of the seg-

ment which appears in its definition.) Moreover segments themselves are

clearly "curves" underthisdefinition, and their "curve" lengths are easily

seen to be the same as their segment lengths.
0

Unfortunately this is not the usual way in which objects which we wish to

call'ouries, arise in mathematics: the objects which we wish to consider as

curves usually arise from continuous functions (Sometimes, but not generally,

1 -1) defined on segments of,the real line, and it turns out to be more useful

to treat the questions of curve definition and curve length separately. In

, the discussion below of these questions we.will see that, withiike definitions

which we eventually adopt, not all curves can be asiiigned "lengths": those

which can, will be called rectifiable curves. It will be true that thq.se rec-

tifiable curves which correspond to 1-1 continuous functions, will be "curves"

in the sense tentatively discussed above'( .e., images of continuous 1-1

"length-preserving" functiqns on some segment), but this will not-be true of

° 'curves generally.

In several places above we have mentioned the word "continuous", as
go

applied to a function from a segment to space S ,. You are probably familiar

elk with the notion of a continuous real-valued function of a real variable, and

with the usual 6: - 5 definition, which you can find in any good elementary

calculus text, such as the SMSG "Calculus". The definition merely maket

precise the intuitive idea that all "sufficiently close" poirits should map
4 N _____,.

- into points which are "arbitrarily close", and it carries over, with very
.

4.4460--,,.

little modification, to functions defined on R or on a segment of R with
,

.

values in the plane, or in space. We shall not give the definition formally,
, /

. but'we point out t

4
tOlthoughtheusual definition involves the distance

functiqns of R a 0S , the notion of continuous function from segment of

R to S is actually independent of any particular distance fw ibh' in either
-.. . .

of these spaCes4
/

and depends only 6 the so-called "topology

,.171 7
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concerned. Because of this, it is not surprit1ng that topological ideas enter%.

into the discussion of curve length. Again, a full discussion would take us
.

nibeyo the scope of this book, but even for our limited discussion it will be.
. .

useful to use the notion of topological_lansformation: a topological trans-

formation (or homeomorphism) i s-1-1 onto function which is bi-continuous

(i.e., co/ tinuous ineach direction). We need to use the intuitively obvious

fact-that any segment is homeomorphic to any pthei segment, in,aLinfidte

number of wayd% (Intuitively, we map the end points of one segment onto the

end points of the other, in either order, and complete the mapping by stretch- ..-

- ing or s4inking toe interior quite arbitrarily provided that we keep the-
, .

' correspondence 1-1.(. -.
.

..

In a second attempt to come to grips with the notions of curve and curve

aength, we might well decide to separate them and to define a curve as the
7rangaof a 1-1 continuous function from a segment into S ;'i.e., as a homeo-

morphic image of a segment in S . This would correspond. to the idea of a -

string which is arbitrarily bent, shrunk, stretched, or twisted, in whole or

in part) with the 1-1 condition corresponding to the }ntuitive iaealvtliat no

two points of the string'could occupy the same.position at the same tiye. We

could carry .cut an entirely satisfactory discussion of curve length for such

"curves", leading to a generalization of the notion of length to aNch larger *

domain than the set of broken segments. But we would then find that our idea

of curve was still not sufficiently general, and that we would want to extend_

the idea of curve still further, to include not merely topological (homeo-

'morphic) images of segments, b t also to, include arbitrary continuous functions

on segments"(Notice that we d not say the ranges of arbitrary continuous

functions on segments: see comment below.)

The idea ighichiwe will want to formalize, is that a curve should corres-A
pond to the path-traced out by a point which moves continuously in a given

time interval ()or ''segment" of time). This physically-motivated idea of

"curve'; turns put to be the most fruitful one, and it includes our earlier

tentative idea as a specigl case. Therefore, to keep the discussion reasonably

brief, we shall formalize this more generallidea, and discuss the corresponding

notion of curve length in this context. While our treatment will be (or can

be made) completely mathematical, we shall refer frequently to the motivating

idea of a curve as the path of a moving point.

x , yj..(x # y) Ore real numbers, we denote by [x,y1the segment

(or interval) of real numbers, (x,y) = (r : r.e R, x < r < y or y < r < x) .

We now define acurve to be a continuous function from somereal interval

172
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[x,y] to space S . A simple curve is a curve which is 1-1 on the interior

of the interval; this corresponds to our more restricted notion as discussed

above. Notice that a curve can be A constant function: i.e., a function

whose range is a single point.

Comment: The subject of .curves and curve length, is poorly treated in many .

Calculus texts. Many of them avoid giving any.definition of curve, while.

others (including some good ones) define a curve to be the image, in S , of °

a continuous function whose domain is an interval of real numbers. This would

be satisfactory if we restricted attention to simple curves, but it is not

satisfactory as a general definition of curve.

You will probably find it strange et_first; that we define a curve to

be a fUnetion, rather than the image of a function. But the definition allows

for the idea of a moving,point which might return to the (same position many

times, retrace part of its route, reverse direction, standstill throughout

the whole interval, and so on; 4nd the notion of curve length, which we shall

introduce, will correspond to the "length of the path traveled". Thus it

would''not be satisfactory (insofar ai our length definition is concerned) to

define the curve to be- merely the image set in S : many different curves,

with different lengths, will have the same image set. Actually you are almost .

certainly familiar already with the notion of a curve as a function; e.g.,
r,

the so- called "sine curve". You are probably accustomed to thinking of the

.sine curve as the graph of the sine,function (a function from J1 to R

Whose range is the interval E.-1,1]) and certainly not as the range ip R

(i.e:, the interval [ -1,1]) of the sine function. And, as you will recall

,from cur earlier discussion; if a function is defined as a certain,set of

ordered pairs in the cartesian product of its domain and its image space,

then the function becomes identical with its graph.

From a physical point'of view, defining a curve to be a function is equi-

valent to defining it to be the_graph of the function in "space X.time". This

graph is a 1-1_continuots'iMage of an!interval of R , in the cartesian product

of R with S ; and this is quite different from the range of the curve func-

tion in V . If we were to restrict considerationr to simple curves, as far as

length is concerned we could get away with defining the curve,to be the range:

it will turn out that, although different simple ourVes (functions) have the

same ninge, simple curves which have the same ran will all have the same

length. For this reason we .411 use the wor "segment" ambiguously, to denote

both a geometric segment, and any oneof t simpleciarve functions having

173 77
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this segment as its range. The game remark applied to other simple curves,

including, of course, elementary-broken segments.' st,

We turn now to alriscussipn of4the introduction of length,funations in

the set r iof aJ1 curves (as defined above).. We observe, flrst thatwe can,

"imbed" the set ,D of all segments of A r by the Si416-device of

using....coordinate mappings: for any seg1ent AB of S if / is the line

AB , there is a 1- 1 .onto coordinate mapping

p : R

such that p(AE) is, a segment [a,bF of E , with' ,p(A) = a , p(B) = b , and

a(A,B)"= la - bl . The segment. AB can now be "identified" with thg function

which is inverse to p 1d restricted tc(i.e., defined on) the domain [a,b].

In this sense, we can consider that r contains D , the set,of all segments

f S . An easy extension of this idea enables us to imbed (in infinitely many.
4,ways) the set d, elementary broken segments in I'

f_,

a

The idea which is use,d*in an attempt to extend the length functions with
domain D , to all (or as much as possible) of r , goes back to the early

Greek mathematicians, who used it successfully to define and calculate the

lengths of many simple curves. The idea is So-"approximate" the curve by
broken segments.

1111 We*define a broken segment to be a curve which is "piecewise linear".
N**That is, f : La,b] S is a broken segment if (aseuMing a < b) thdre are

numbers a = xo < x2 < x
n

= b , such.that" foreach i =/1 , 2 , -

n , the restricted function fl[xiji ,xi] is constant, or is a segment.

This means, of course, that ti[xi_i,xi] is either constant or 'Po- 1 , and _

that, the image*of fAxv.3.2xil is either a point, or a segme:nt in the geO-

trica

esense. But this does not meanthat the overall image of f on

xo,x is an elementark broken segment. The diagram below, in wilich Xi

denot

4

X
24

s f(x
i

) , es the d a of a broken segment:

3:74118
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The dligram cannot exhibit the funCtion itself, but only its range. The dia-
.

'gram illustrates the fact that the definition dlloys for a broken segment (curve)

whose image may be quite different from that of a simple broken segment, and

wiliCh might not fit in with your intuitive picture of what a curve should'be.

'This degree of generality is really'necessary,?.f a curve ±s tb be the formali-

zation of the idea of the path of e Moving point: yod'should ttave no difficulty

in envisaging such a "motion"ips 'represented by the diagram..

If curveslength is to correspond to the 'length of the bath travelqd",

-Ellen the appropriate definition' for the length of the broken segment 41'

(Xo

.......

under alength function related to the distance function a for S', is.,
4 i

clearly,
I

.

\X(f) =a(P ,÷(X0) ,f(y) a(f(X32) , f(X W-4.,i .
-

f(Xn..), f(Xn))

= X X 0110X X + ... 4-.X X'
..,0 1" n-lAn

where we use the usual notation X.
4-1 4

X. to denot he length (under the

relevant length function) of the segment Xi_iXi '. (If Xi_i = Xi , then -

Xi_lXi is, "of course, 0".) -Thus4X "is ;defined on .the set 'of broken segments

(which can be assumed to .4.nclude',the set D of all. segments, and the get DI, ets,
.., , r h

ofdentary Token segments0a1A its Vallies are nonnegative real numbers.

The versification of the following' statements is
- .

N
(i) On'the subset D , (which

. particular length function
4

distance function a

.

includes D)

fcrr

somewhat lngthy, but

/

X "agrees" with thc

corresponds tq the

.

(ii) 'There is a 1-1 correspondence between t e length functi ns for

-11 and their.extensiOns to the '56.'t of.all broken:pegment6;i,eS,
.. ., ,

each length funttionchas P unique extension. ..

.,..--Al' .--

..

, (iii) If f : No,xn] -+S is, a broken segment, end a : S.-4,;S is a con-
, i

i ; r',- , _- .

grud'nce (rigid motioxi)* then of is a,broken segment, and)
_. ....

X(f) = X(cif) ., ,

, '
(4v) It is poPsible to establish a "lengt

all brdken,'segments, iwith Eitiita14-

± ,

structure" on the set of

equivalence relati (includ-
. -

ing the congrUence,c4ridition of (i afid an appropriate genprali-

zation:of "tieCewise'bongruence uilaa.fr subdivision" and a,cOndi-

tion which expresses formally --'by'means of a monotone fUnctfon' *.t
on the-domains, of,the curve :functiOn61,-- the d4 of,treversng

.1 41
t5,c
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the samespatb, but not neoetsarily in the same direction or at

th'same "rate); an inequality relation; and a join operation
0

on the equivalence classes, These agree with the mearlier rela2

tions and operations on D , and with them the set of equkiralence

classes of broken segments becomes an ordered abelian semigroup,
which, with the zero element excluded, is naturally isomorphic to
the semigroup . Moreover, it can be shown that the length

. -
function-defined'above for broken segments agrees with the earlier
isomorphism of 15 *onto R . In this sense the extension is
unique.

'(v) If X
1 '

-X
2 /

Twith X
1

= kX ) are length fUnctions orr r)- then

their extensions to the set of all broken segments have the same

relationship; i.e. they are related by composition with the_same

positive similarity E of R*
0

The next step ip to attemptto further extend t e domain to the set D

of all curves. We can proceed directly, using the intuitive idea of approxi-

mating a curve'by broken segments, and define nength function X_ for curves,
.

by defining the length of a curve (withAespect to X) to be the least-upper.

bound (if it exists) of the..set of lengths ,(undeilifixed length function

k0) ofall approximating broken'segments. (Eventually 'it is convenient to

use the same symbol for a_lensth function for broken segments and for its
4

unique-extension to the setlOf curves.) The definition is motivated by two

simple requirements:

.
t -

(i) the length of the curve itself should be at least as large as the

1

any appeoximating broken segment. (This is ,derived from
i* i.

niuitive idea or a straight line as the shdrtest dis ande.-
. ,.-,.--

,between'two points); and

(ii).:11,the set of ail approximati broken segments ;theresho d be
..

'''some whose lengths ai-'''-prcimat the desired curve length arbitrarily,

closply.

It 'etirmleoutthat, with, the general definition which we are using for 1.-

curve, theretare -some' curves fo 'which ( der
i

each'unde41ying distsnce/length70f S' ,
;function on'iS/D) the get of t e length of all approximsting\broken segments,

..-%
I

p%
is unbounded, andhence'there i no eas upper; Those curves for which

such'Sbourd (and henc a least I

upp r bo d)' exists:4under any;amtd.hence unde
every distaAce function) are called red ifiable curves . Ph set D

r. bfall
.'

.'.. -.0
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r.

rectifiable carves is the domain.of our extended length functions, This set

includes the set of all broken segments;'and, for a given underlying segment-
.-

length function, the curve length of a brOken segment is easily shown to be

its length as.sibroken segment. As fOr 1frokengments, curve length is, in-

variant'under congruence or piegwise congruence (using a finite number of

"pieces"); it is monotone, in the sense that (with the obvious definition for

subcurve) the length of a subcurve <. °the length of the curve; it is

additive wi,threspectato a naturally defined. join operation for curves; and

the "chain rule" for changing units, still:',applies.

We could try to establish a "length strucure"'on the domain of curves

. itself, withOut using the definition of length, and attempt to prove that te,

defined length functions are the only homomorphisms which, preserve this struc-

ture, and which extend the earlier length functions. Something can be done

along theseines,'but the treatment is quite lengthy, and it cannot avoid

involvement with topological ideas Which might be unfamiliar to you. More-

' over the rgther complicated details tepid to obscUre the essential simplicity -

of the ideas involved, which,-we repeat, are completely motivated by considera-

tion of the physical idea.of the dista e traveled by a moving point-object

during a finite jime- interval.

In view of the almost universal acceptant in.our culture of the state-
.

ment "6, straight line is the shOttest distance between two points", We remark,

that, for the geometric space S ,it is indeed true that, of all the curves

whiCh "join" two points of S ,'the 'line segment has least'length. (This is

unit -free statement, You should try to prove it for yourseift,using the

familiar "triangle inequality" of geometry.) But this is not.a very profound

obserrion% because (as remarked above) our definition of curve length was

partly motivated by AV de ire-to achieve jilt this situation.

HaVing defined length functions on the domain of rectifiable cu2Ves, the

next step is to cgnsider how we might actually calculate the values.ofthese

ftinctionk for particular elements .of the domain` As indicated abovethe
' Ars

Greeks, succeeded in doing this in a few cases, using rather intuitive methods.

But, ts you are probably aware, the most common computational devi.ce in current

use'involves calculus methods, especitilTrthe evaluation of certain definite

integrals. You can find,getails of such methods and calC tions /'in most

books on c lculus, and we do riot i tend to discuss them here. We do, however,,

comment, that calculu thods for length calculation are applicable to vtry

few (in a certain sense,' almost' none) of the rectifiable curves.' B1.4,1i:Of
,)

tunately, thesefew.inelude.most of those.of greatest iMportance for the ..

, , _ 0A
/ empirical concept,of curve length. .1' -

) 177
,1
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Inicase you wish to pursue the question of curve length, it is only fair

to'point out ttat very few calculus texts contain much of the material which

we have presented (even if sOmdWhat sketchily) above. Moreover (as remarked

above) many of them discus's curves without giving a definition,,u they define

(incorrectly) a (space) curve to be the range of a continuous function inillpace;_

and a broken se nt to be a point set, rather thana function. And, almost

universe ey fail to mention such important matters as length invariance

under congruence and the fact 1.hatigil curve-length functions are similar.

mile on this question of the,definition of a purv, we should perhaps

make a few comments concerning "plane curves" and "line curves", and some

associated language problems. ,These are not serious, but they might confuse'

you if you are not forewarned about them. 141; have defined space curves to be

continuous functions of a real number inte2Val [x,y] into S , and we have

indicated thatN ese functions may ;Pe identified with their graphs in the

"for dimensional" product R X S-. In EL,natural way, such a graph is

the-range of a 1-1 -continuous function from [x,y] to R x S .

If we wfshoto be 'coAbistent, we must define a 212L-t curve to be a fun7Caon

from '[x,y] to a plane P , and this function (i.e., its graph) is the range

of a 1-1 continuous function from. [x,y] to R x P . This'product can be

corresporided with S in a straightforward way, so that we can picture a plane

curve as a point set in space. To be futther consistent, we would have to call

a continuous function from [x;y] to a line -a line curve (a terminology

14hich is rarely, if eVer, used), and note the correspondence **line curves

with certain S:absets of R x . This situation is very familiar: if Q is

given a coordinate system,°we ususllY 'picture". a inr curve f

ob meang of its. ggraph", 4(t ; f(t)) : t e [x,y]) thethe "plane" R x Q .

This graph is also referred t6 as a "plane curve'. c-C6uglly the lie curve ,
. 1

f does determine a plane curve as we hale used the term: namely the imple

plane cur e

F -4 (t,,r.qt,))
I

so this confudIon.in language is not- too serious. But most of ottr plane

curves (even most of the simple plane curves) cannot be derived in this way

from he, graphs of line ' clarlis, so it is important not too think of plane

urve Merely as thtilgraphs of continuous real valued functions.

.

AO'

Of,
,
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2-9 Extension of the Domain For Length FunctionSI
. Measure Theo..--

1 . .

... .../.
,Tr, er ; V z' s?

Under this heading we ShaYi study mlfmnrefunctions of El cial
, .-'

kind. The branch of mathematics known a
sres

measure theory is a Ati1-. $ .

dent of the (mathematical) theOry of length, and of the rei.ated simP1e4 heories t

or area and'voiume, which -we shall discuss later., We shali,restrictbur atten-

tion mainly to the theory of linear measure, as applied to subsets of,51."line.

This

.

is a generalization of the theory of length as applied to line segments.

Measure'theory is largely a development of the present centUry,,with its be-
. .

gi--A nnings associated with suc

mental place in the Oudy,of real nction theory, and in probability theory.'

names as Borel andLebesgue. a funds-

Roughly speaking, our objectiiteis to extend the. domain of the length
.

functions ,from the set of

of the subLts of a. line.

line has a coordinate syi

coordinates. In other wo

all segments to include all, or as many as possible,

To keep matters simple, we will consi4en thatrour

tem, andev'e "identify" points of the line with tycir

s, we considei- the so- galled "real line"Awhose

hepoints are the:real numbers, and we seek to extend the domain D ,of

"natural" length function, p : D -411+ , for which-p([a,b]), = la b.
(Other length functions'(related to p by similarit"T luld be used-as

starting point, leading to corresponding similarityy eluted measure functions.
r

Such scale Changes folloW the familiar "similarity" Pr' er ,-and do not present

aiiy addtional diffieu1ties.r

We observe immediately that ia not sufficient merely.,t0Ak whethex'-the

function 4' can be extended-to a larger domain: we'Can easily extend p by'

giving arbitrary values to those subsets which are.not segmepts. .this,,

of course, does not fit' in with our idea of generalizing the noti
.r. /.-\ ,

the gene alization we Seek sh uld have ome reasonable ,properties,in E

to a "1" ear-Meas4e structur ''of the et 02
R

of all'Subseth
-----

....

real
.

.

line R I. In other words, we mfght cipp oach the domain ex`teni 3lTgt tion
I

in the ame spirit as we arbaohed the original proVfaM,,of lanith asure-./.., .

,

ment;,and seek tq firet give a measure
.

:-structure to 2, 4uad.then OR whqtheii;., ,

. .
-

et-.,J . %

there are functions whiCh preserve this st cture., e

,
silts

such a treatment in detail, but this is th1 spirit in which

problem.

I

o
,.;

We redail that A algebraic structure r-th
, -

zinc 1(
1

{idesdes the partial o der rcla ion of incluei ; th c

tive operations of union and intersection,:each of iLl
t ,

....

rer

othe; the notion of complement (we denote .the complement
,....

,.

,A) and

-carry'thropgh

ovproach,the,

tr ti
ted notion of. difference. (A ,(a : a, e A ,,a iBk

of sTgils of R

istrOutes'over they

(in4q)-of a sot

179
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Iwe think of our problem in physical terms, as the problem of assigning.

an appropriate "weight" to every subset of the line, we might well look for a

function µ , from 2
R

to the set R
0

(the nonnegativereals), whict has

some or all of the following properties (X W ,denGte subsets of R) .

-
(i) u is defined on the whole -olf 2R .

(ii) p.([a;b]1 a - bl foi4 all a , b ER.

(iii) -If X =j0 , then p.(X) = 0

(iv) If u(X) = 0 then X =

(v) (Monotonicity). If X c Y then 4(X) < p.(y)°.

(tti) I X c Y , X Y then u(X) < p.(y) .

(vii) If p. X) < u(Y) , and WnX=WnY=0, then p.(X U 41)<1.1.(YU Tel) .

(viii) (Ad its ity). If X n Y = 0 , then u(X u = u(X) u(Y)

..
- -_--

(ix)
t

Congruent sets should have the smile measure, and similar sets
, ..

'should have corresponding ".similar" measures; more precisely, if

. fbr real numbers a , b , a k 0 , ye `define .

[at bj I-- tr. : y = ax + b., x4' X},- then [aX -Via] is 54.1riilar

. t4P X (with a similarity factor'
I a I ) ", and (aX -1-p] is con-

gruent to X when a r.-- 1or -1 ; the suggested requirement is: .

11([aX b]s) = lelu(X)

(x) Property (141i) implies finite additivity; i.e., for any finite

collectiqopof pairwise disjoint sets, the measure of the union

Should'be the sum of the measures. We might'wish to extend this
.- .

-,..

i 'to imply countable additivity (a countable set is one which is, ...., . .
finite, or which.is denumerable; d denumera le set is

I

.

can be put into 1 -1 correspondence with -th tUral n

i i.e., we might require tbat if X 7, is tequence of
.. , . 41;

disjoint sets, teen tµ(U = Simi d ,, at le st

series on the right isconve.rgen:6;-. (As an exa

. think of the sequence of pairwiseThlisjoint "left* closed, right
,..

,

ne which

bers);,...

.1

r:VZ,
of

11

4-. -I ": .,:.---e .v.-; .,,

211;-:3,1)
7:1,--,-,i, .0. "...

. -4-;7 .2 ;.: --:-: -- '2.
.,.- 2n-1, -__-.1---- °-2 --

.

<-5: <--n,-3., ,:..- -. n- ....

if), the, lrleft'&..tzritrecir::right-bp n'' intdrva"1. 1-,.0,1)-.1
_''' t ...-t° i'. 1..-- -. r," '''

Ain :-',18.0". 7,--., -3-,.--1=z '--. ---
ii .s.- A. ;,-,: 4 - - - - -,, -,-,-. 4

P',,r.. .1..''.1i ' e''- -:: :
;I..- ,,,,-



We can easily see that theseddggested propekes aresnot all independent,

but we shall not attempt to reduce them to an independent set or properties.

We examine some of the implications of these properties. First of all,

even in_terms of physic ausibility, we mus.t exclude property (1): it does
_

not seem reasonable to'N pect o assign a (finite) Measure to such infinite
. s

sets as the teal line itself, or to any ray,of the line. More significantly,

the assumption that a finite measure could be assigned td R would contradict

the implication of properties (iii), (v) and (viii)Tas applied (for example)

to the unionvf the disjoint unit segments [0,1] , [2,3] , [4,5] , ,

which is, clearly, a proper subset of R .No matter what i':eaInumber p(R)

we might assign as a measure for R , there is some integer 'n (representing .

40- 111)

the measure of, n disjoint unit inteirals) which is greater than- p(14-, and

this would contradict monotonicity. Of courdewe could think of modifying,

properties (ii), (vi)f or (viii), but it deems far'more reasonable to discard'

property (i), and agree that we shoula'not expect to include all subsets of

in the 'domain of our measure functions:
401 4

1
4 , #We might now try to decide which subsets of R rwe should include in our

domairi, and which welshould not include, but we will not be able to answer

this question directly. As sets to be included, we would almost certainly, f
wani all finite unions of segments. (You might think thal we should be more

. ,

'cautious,',and,inclUde only i'he union of pairwise disjoint segments. But, if

ou observe that the union 9f two non - disjoint segments is again a segment,.

will see that any finite -Ilion of segments can be expressed as a finite
.--

. -...1.0.-

union.of pairwjk disjoint segments.) As sets to.be.excluded from the doWn,

you might think at first that, in addition to rays apd "half 1in4, we

,include all unbounded sets. (A b undyed set is 'a set which is contained in 1

.
. .

some egment of the line.) Bu4t t is would turn out Ito be too dra'Stic.

W thor actua y deciding wha the domain must be, we can consiAer some

properti s which w that welare !greed that the'domain cannot be the whole
Rs .`'t.,

of 2 ) he darnel should have. We denote the (undetermined) domain by M ,,
* .

and refer info ally at present) to those subsets.of R 'which belong to M .

l'intas measurab e s s (of the line). .Some TrOperties.which we might like the

collection :\ .to possess, are thetdllowing: .
1

M(i) M is clOsediunder finite uniond. ,(Clearly,this is related to
,74 H1 - .

the finite additivity of ti .) 4."..- .1.

M(ii) M 4s closid under di ferences of sets (and hence, as can be

proved, under finite intersection as well.) oft

-.

s

181,
183
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M(iii) M contains D , the 'set of all giiiPhta*.of R .

ft(`q) M is closed under those point - transformations which are

.determined by similarity transformations of R . (This includes,

of'course4 the-aongruences-,of R .)

'A non -empty colleCtion of sets which are,subsets of some simagle set, and
pr.

which satisfy M(i) and M(ii) , itcalled a Boolean ring (usually abbreviated

to ring) of sets. A Boolean algebra of sets is a ring which satisfies the

, stronger condition of being clo;ed under 'complementation.. A a-ring (a-algebra) .

of sets,'is a ring (algebra) of sets,,whiCh isalosed under thepperation.of .

forming countable unions. BoOfean rings and algebras are common structures for

the domain of a measure function. If K is-any (non-empty) collection-of sub-

sets of the lint, then there are rings of sets which include K . (E,g., 2 .)

The intersection of all such rings is again a ring. It'is called the ring

_ generated by K . . r' -\
Z" -

% Instead of worrying further,-at this stage, about the ddmain,let us look
1

. .

at some of the implications of the other suggested properties for -J.: :
.....

, .,. . _.
j,Property (ii), (p([a,b)) = la - bl) , must be retained if ourlmeasure

,function is-to be a' generalization of thd "natural" length function.i,,

.

Property/(iii), ,(11(0). F 0) , will follow; if we reqUire finite additiyity.

(I.e., p(X)'= 11(X .0 0) ,= .1.i(X) :1'.1.40) :°°Rence '1(0) = 0 .)
. '

PIOperii(l.v),' (1(X) = 0 implies that X,= 0) ; seiMs plausible from,
I an empirical si6dpoint, but accepting it would imply that.every set Vr ,

consisting of a single point would have a non-zero measure. Moreover, .

/these single- element sets are all congrat "and the congruence propert -

is 'one whish 'we will want to seta if,at
. , 0;

v.
posible. 'Thus' 1.f the

measar of each singlelpoint set s p , p > 0 ; the arahimpolean property

of tne positive real numbers tell us £hat thereris-ak positiv'e integer .m
.

imach that mp >,l . Thus fo some finite subset W Of, m points in the
' Interval 10,1] , we would have (from :the finite additiiiity property

(viii,)) >y([0,1]) . 'This is_ contrary lo the lMcnotonicity property
, -.... 4 1 ,

(v). It seems more important to retainthe additivity and monotonicity
10. I properties, so we give up property (iv)'; and agree that egch set con-,

sisting of grsingle point shall have measure 0-. TI)ds implies (from the.

additivity property) 4.4 every finite het of. points must have measure -

zero; and if we decide to retain Countable additivity, Aril. impag. thatt,
every dendherabie set has measure.zelC7iThis includes the,set of al/t. .

integers, and the_set of 44,rlational numbers, but, of cmuise,tnot the' ,'
t 1,. ''

P-- '"

, ..:486
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set of all real numbers, or en the set of all real numbers in a given.

interval.) Notice that if we etain countable additivity and thus give

measure zero to the set.of integers, we will have an example of an un-

bounded set which is contained in our domain of measurable sets.

are more significant examples of unbounded measurable sets.) You should

1.

observe also.that if we assume property (ii) for u , (a closed segment

h..as its "natural" measure); and if we further assume that all *lite sets

belong to M andhave,measure zero, then properties M(ii), M(iii) imply*

that M also
*c

o ins all open Segments; at all "semi-open" segments,

and that

u((a,b]) = u((a/b)) = 11((a,b]) = P((a,b)) = lb - al .

(As before; the use of a Parenthesis instead of a square bracket indr-

pates that the'corresponding end point A excluded, leaving the segment---
4

"open" at .that end.)
4,

Pro e v), (monotonicity),will rfollowfrom additivity, and the fact.

then B = A U (B - A) , and A n (B - A) = 0that' f Ac B

Property (vi),

related to the

non -empty sets

(X c'Y , X`/ 'Y implies that

discarded propeyty'(iv), and

must be given Measure zero,
- .

given up.

u(X) < u(Y)) , is clearly

once we have agreed thdt some

property (v1) must al$O be

Property (vii), 6.1.(X) <,u(Y) and Xn W=yn W = 0 implies that

1.1(X1jW) < u(Y u W) , for measurable sets X , Y , W) is not an inde:

pendent property: it is a consequence of (viii).

Property (viii) is the finite additivity property. -This ±s; clearly;

quite basic, and we retain it. Associated with this prOperty'(#ow that

we have agre d that M / 2R) is condition .M(1), that M is closed

1 - under finit

Property'

,ties which

is the extension of the congruence and similarity iroper-
'

lready apply on the pub-domain of segments. Our physical I

i tuition stuests that we should try to retain these properties.if

possible. 4

Property LI, is the countable additivity property.__ If we retain th

congruence property, and if we limit u to finite values (see blow fo

comment on this) then we cannot demand t

)iniOITS; (the whole realkine can be express

$eghlentS,,and we
k

have excluded R from M) Thusthecountable.additi-

vity condi4on, if retained,.will have- t o: he extiressed in suc 'form as :

M be closed under countable
4

as a count'able union of.

. I'
t .1831 /7 ' 1

/.
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41t

if Xn is a sequence of pairwile dis-Sqint measurable sets for which

im E p(X ) exists, And whose union is in M , then
' n n

p.(U X) = lim p.(iC ),
n n

Z
n 7

4
We now consolidate, the m dified prop ies suggested for p and M.,

N
.

again making A° attempt togi minimal 1%st of independent properties.

, Y , W 'denote sets in-the collection M .)

- 4

1. M is a Boolean ring of subsets of R

2. M contains al l .(closed) segments, alllopen segmdnts, all semi-open seg-

ments and all countable sets.

3. M is closed udder similarity transformations of R .

.4. P(NI,W) = i./((a,b)) = p(Ea,b)) = p((a,b)) = la Id

,,5. P.(93) = 0 .4

6. If X c Y then p(X), < p(Y)r.

7. If .X fl Y = 0 -then p(X U Y) = (x) + p(Y) .

8. p((aX + b]) = lalp(X) ;-(a./ CO
0

9. If X
n

is a sequence of pairwise disjoint sets of M whose union is

ih M , then

p(g xfly = lim Z p(Xn)

r

We might now ask ourselves: are there rings M ,of Rbsets of R , and

se properties? The an t there are,

For example, if MO is the ,malle4lring of sets ( . he interaectionrofs.

all such rings) which satisfies conditions 1 , 2 , 31, hen thereJis a unique
-,1

measure function on M
0

Which satisfies-the remaining conditions.; We shall
14

not attempt to prove this,. but yoll can find the,prbofpof a very similar result
, ..

functions p., which have' th

inn Chapter 2of (11). , t )

.,

446,

To some extent this i result is unsatisfactOry, because it dOes.not give

art' indication of how much further p -could 12e extended beyond thip minimal
. 4ring M

0 '
nor does it give. any.Information on the question of uhmeasurable

sets, which
'

from- what weili e

question of unboundedness.' n

J

tary) piature of t ',01:ibe.; of

thetheorydfIiebe gue measure
..

4

giving ftly the de initionp a

said so far, you probably asscriate w

ozder to ,dive yolks larger,(bat St

Measureleory6n the linYG

decr4Sabs

f 116*
-

as applied to b

ndr,. e s emen

z

th the

elemen-
14'

, we pall outline

is dr,:the line,
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, _. , . .

like to, tTy to prove these for yourself: .proofs can be found in many
. ..-....

re44i.itign.Aebry; e.g*, (161)
_-,
e re iction( to houn041-5- k ..i:-1

_

ii-Walr -in o. et to remove it we would nee to stindideA0
n. ;

te,loiu s fOr. 4,, ip the so-caltfd "extended real number systemli;-:.-o N
, -...

this additonal complication ip.nbt essential to the ideas hich wehoge toy."," 1..% o -.
Convey. i ., .

. e . ' ' . ... , I
We might now....taeonsider our objective-in ration to. bounded setsi,-and .i

.ask whe-ther.there exists a countably additive fuliction,. u , with values---iri ,;--

,

R
+
0

"
'

which is defined on the.sgt B of all bounded subsets ofthe gal ii.ne,:'
.41.

.. ,, 1

' which satisfies ,u([0;1]) = 1 and hence, as can be 'proved, 4.(444,1)
i
=la -141 ,

and which assigns the smile value -C? -e9pgruent sets. (We are.not..popping the,

...monotonicity'condition, Ais,we'sawlearlier,it is a coheguence.of the other

coriditioni.)Theanswertdthis.'question is "no", so it becomes necessary to*d
:

relax some. of these conditions in order to get a measure ftinction. '3[5.w relax

the condition of, countable additivity to finite additivity, thence can he

4. shown that a suitable functiondoes exist, but 4 is not unique. .This is
, :

'quite a diffidult theorem.) ' // -.

, c- . , ',.. I
e remark, parenthetically, that the situation is similar fOr the coxfr

.

.

po3ling generalzed:etrea problem fOr bo/Unded subsets of the.plane; hut, some-
. r

what surprisingly, tiie corresponding generalized volume prolilem"(yith finite
4 ,/ :.' ,r,

additivity) for bounded suhses,-of Space he's no solution; there are,no, :'..

- .- '

.. ... .

"generalized volume" measures:defined_,on the domain of gill bounded subs sOts oi"Ak
.-,. . %..... ,

,

space, which satisfy the congruence 'tiotz and whibch,are finitely additive,'
-..

/q,-,--,
--- ,' '4.1!

/
For the a plicatiqn measure theory i mathematics, it turns. out to be

.,

more fruitfli to,retain th4. condition of counts e additivity apd accepts e

restricti the domaie-Otherthan settle ro finite
4

additivity,,`.
. . sr ,---;-

ddes n6t regu re, ny further /restriction Of domain. This leads .to thitebes

theory of'measure. Inv.rder to describe his theory, we need a felt 'airm3k i

concerning 5pen and closed Subsets of the real line. These sets can 144. Ilm,
__ '.')'.'-:A.'r

sidered as generalizations of open and,closed intervals, with which .youali
e

/

already familiar.
....--...,, . , . :

A set X In B is a'operlinterval,-if there xist points- a- a
2

e

suct.that X = (a
l'

a
2
) = (x : x e-R , and a

1
< x < a

2
or et <.a

-(C141-1y,,if i*/ 0 ythen Sll a2 .) ,

. .

'A set Y in R is a closed interval, if thereexist points' h
'

b 4

such that
2 y %,)

Y = [)1'b 2] = tx x' R , and b`kx <b
2

or b'
;3_

< x < b
1 1

. (; .)4 I-
,' , , i8 1 Q(1 4 . 1,,

V .4"- 4 1 i ( (' ( <4, -L LI 0
.. ..,4 i . , . . ., 4,

1 . 1 4 e ' . 1 k 1,'
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4P

A set G in R is open if, given a6 g e G , there exists an open

interval, X, such that g eXcG.

A set F in R is closed if its complement.in R is open.

'The following properties of open and closed su

left for you trove as exercises:

(i) An open intervals an'open set.
. ,

(ii) A closed interval is a closed set.

/
,(iii) Th4 empty set 0 , and the whole line, R , are each bothOPen and

sets of the real line are

closed; 0 is the'only bounded set whichig both open and closed.

(iv) Any union of open sets is open, and any intersection of closed

sets is closed.

(v) Any finite intersection of ripen sets is.open) and any finite union

of closed sets is closed.

vi) EVery open set is the Union of a countable cofleCtion of pairwise

disjoint open intervals.

(vii) If 'G is open, F closed, then G - F is open, and F

"Closed.

Motivated by- our earlier discussion, we can define a measure function m ,

on the collection if. 'of all.bounded.open sets, in an entirely natural way.

We define m(0) = 0 , andforan'open interval (a,b) , we define

m((a,b)) =lja If inor,i'G, is any op n set, then (from property,(vi)

above).G=LTS',where(5%)is a coup able coll ction of pairwise disjointi

open intery ls. Moreover, if! is boun ed, it is easIly-shown that the

sequence of numbers defied by:

n

-an' =E
4- is bonded, and hence has a least upper

. to define

s.

7
ound, sup (on} . It seems natural.

m(G) = sup(
n
u.)

(41 discussion of 'measure /qUestionb't s least upper bonh

m(6 r; if the n ber ofA "compoisent ntervals" Si i0

stood to be the usua sum, and if the nupber is countabl

the sequente o n -of partial'sumsi the least uppe

?

4

/ -

Ls often.denoted by,

finite this is under-

the limit 'of

bound.of (od
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. .

It can be shown that this measure function, defined on the set of bbunded
\.)

i

open intervals, iscountably additive and monotone on.this domain. This

,

//
domain is not, however, a ring, nor,doeS it .even include the closed intervalt."''

:-

PO

P
We can extend m so that its domain includes the collectio4 Bc Of all

%. .

bounded closed sets, as follows: If F is a bounded closed set, let [a,b

be the smallest (i.e., intersection of.all) cglsed interval which contains F ,
b

We then use the fact that (a/b) - F lb open, to define. .0.
8 . , 4

M(F) = la .0b1 - m((a,b) - F) . -
,*11WI

s..

. (Actually :a and b must belong to F , so that (a,b) - F = [a,b] - F .]

Because -BcflaBc = (0) ,m is thin domed on B0 U Bc . Itcan now be

she n that 8 ,.

(i) for any closed intdrval (a,b] , nt-(ra,6 is the "natural"
)

length of the interval;

(ii) the measure a finite unio n of pai rwise disjoint closed

intervals is as we should expect, the sum of their lengths;

(iii) any bounded finite set of points has measure zero;

4_
4t77)---t1Te measure of any bounded closed set iS nonnegative;

_

(v) m is finitely additive on the collection B of all boUnded

closed sets, and countably additive on the collection B
0

of

all bounded open sets;

0 is monotone.o the collect on all bounded open or c sed

sets)

asure e-a bounded closed set F is th *greatest lower
.j

and of th measures of all of t e bounded open sets which

ntain F

-(viii) he measure ofa bounded open set 'G, is th11/least upper bound

of the meds res of all ofithe bo dedclosed sets contained in
. .

._
I.

G..
.

,,

, .>

.

-The above properties 1idicate that the fu ction m might be considered
.

to be a reasonably satisfactory extension of e idea of length to the c011ec-
,_ L i

-; 1

tion /3 U B
C

i

of all bounded subsets of R hiTh are either open, or closedclosed'.
0 ,

But.we observe that this collection is not yet,a ring, and it do's not even ,1W
contain semi-open intervals,. so we must try, to extend the function m further

.71'::'

than this. The idea which Lebesgue used to thieve thisext14.ension (an thee
.--

which is not too frir removed ffbm the, of approximating apc4rve by broken
w.

'
i

segments) was to use the measures on closed apdopen sets to. get "inner" and
. .

1 1: ,. ". -t ;
.

181 D
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"outer" measures for every bounded set, and then to defile a boundeX.set to be

measurable if its inner and outer measures yez4 the same. This idea makes all .

. bounded open and closed tet,
i

measurable (an ves them the measures desribed
. i above) bUt the collection of such bounded measurable sets turns out to be far

.

,; 1d

lar r th n. Bo U Bo, and it has the desired property,f being a ring. .We N,
rshall o line Lebesgue r .

44s treatment: J

Let E be a bounded setlof R . We define the (Lebesgue ) outer measure,*,
m (E) , of E to be the greatest lower bound of the measures of all boundid

. open'sets G which contain E . '(Cf. (vii) above.)' I.e.,
. ,

.444

(E) = inf WO
G D E

-.We define. the (Lebpsgue) inner measure, m*(E) ,' of E to be tke least Apper *

bound of the measures of all bounded clos*etfsets F which are contain4d in
..

E . (Cf. (viii) above. vIe.,
-7.

4 i
.1

. ,
.

. .
..

e .

ir . m (E) = sup
(m(F)) .*

'co 4
, , 4 F c E

-'-' * .

. . .11161.61lowing properties , df m and m* are easily.pToved:
i

--...r

( i) m and Ing?4, are nohnege,tive Tear iralu unctions. .1.

;."

(ii)
1

The domain of each function m , m* , is the set B of all

bouhded subsets of R ; clearly,t4s domain B is a ring.. . '0,,
....1'

(iii) If E e
*
B
0
U B

0
{i,e-, E is 'bounded, and either open or closed)

,

' then m (E) =in*()' =Ii(E) .

1 1
.

.,

e 1 q

(I For every E e B,

m 54117,*(E). .

(v) If E
1

, E2' , are congruent bounded sets, then

,m*.(E
1

) = al-x-E
2

) and
...m *

(E
1

)

,=
m
*
(E
2

)

,
.

..

(A corresponding property holds for similar sets.)

,

. ,

.ti

..
.- . ;

an
:

...,(vi) Both , A and:, ,,m*, are monotone; i.e., if E1 , E2 e 8 -1 with
. %

El c E then , -
. ,

1 2 '
.

, ',..._

m*(E1) < m*(;) -; and m*(Ei) 5 m*(E2) )
..

4 -

92



128



is bounded,' and
0

of. bounded sets

E is the union

(not necessarily

* ,

m (E) <
n

m (E
n

.
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of a countable collection

nairwise
t-
disjoint) then

(viii) If E is boilinded,,an \E is the union of a countable collection
,

. . .

of pairwise disjoint bounded 'Sets E . , then
. .,,.. n.

M (E) > Z M (E' . ^t

* n- 4 IA:, 1.

.: t

o
(ix) If .E is contained»i a' bounded open set, G , then

o / ' -

m(G) = m (E) mep = t%4E). m E)

, 'I% ;

Remark: You might have noticed the
1
0:)sence of,:any additivity property,. for

either m or m* We shall see 'later that neither function is even _

finitely additive on B , so, in this sense, neither is a satisfactory

generalization of a length function to the whole of B

-

mo'
This is far from a

.measure functions,

As remarked above,
I

below) they do nit

finitely additive

,

complete

but it should
*
m and

agree on

on B

fist of the properties of the inne3 andtputer

give you some idea of'the main pYoPertAes.

m* agree on )30 U.B,d , (as we= hall see

the whole of B . Neither .c,f,,,thesa Vinctiohs

, but each is countably ad ditive on U Br
....% 1

If we 'restrict attentiwyto,the collection B
L°

of those..AundO
,

s.. .
, ..:,

-*which m
*

,, and m* give the same value, then the inequalities W.6yii) and

above, combine td show that, if E is a bounded Sgt whicOi.6he union

countable collection of pairwise disjoint sets E fr8iir. BVp.then-,'

v;, :

n 1.,, .
.

. ,'
,x

-.. :. -", .

m-* (E) < Z m*(E ) = .E m (E ) < m (Er< m (E)n n n*n *
\' 4i;hus all of the'inequalities.in this sentencd are, in fact,: equalities, and

therefore E also belongs to Bt . Thus the functions m* and m
,

agree
, .,

on- BL , and eachtis countably additive on BL . This is the motivation for

t14-definition offigsurable set: a bounded set E is said to be (Lebesgue)
.;4-: .'"'

measurable if m (E) = m*(E) .- ftthe collection B.,. of bounded measurable
1 . ,

BL

sets, the following can be kroved: '

(viii)

of the

*

I

(i) BL .is a ring.

`('iii) RI" contains Tio and hence contain9 the r).nsi genegated by

B0 U Bc

r
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(iii) The function

defined by:.,

f

. -.

; . 4,7m(E) = m (El) = m(E),

1

s

for,each E E 131: is coUntably additivestinr
.

t e "natural" length function on segment;

value to congruent sees.

(iv) BL includes all bounded sets which\belong

generated by B0 U BC ; however, there are

cannot be obtained in this Way.

B.Lo; it agrees with

s'ntl:it gives the same

tbi the a -:.algebra

sets.. in BL which

1

(c,r) Every countable bounded set belongs to BL , and has Measure zero.,_
- $.

(vi) Every set of outer measure zero belohgs to Br, , but a set of .-

outer measure zero is not necessarily countable.

(vii)
L

is. closed under similarity point - transformations -of "Rt, and

similar sets,pve corresponding "similar" messures."--

'Remark: As stated earlier, the restriction of boundedness,is not necessary
.

if we are willing to use as value spacet the extended honnegative real nudber_.

system. {This' includes'a number withwith suitable properties.) Most modern

teairaents of measure theory4rbdrcl in this way. (An elementary' "treatment

can be found in an- appendix to Chapter 3 of [161.) if.this is done, then it
T,

can be shown that the collection ML of all Lebesgue-measurable sets includes
,

(as a proper subset) the a-a,lgebra generated by the collection of all open

and closed sets. The sets in this a-algebra are called Bore sets: each
Ai

Borel set can be obtained from open sets (and hence from open segments) by a

countable number of the operations of union, intersection, and complementation.

In at certain sense, any measurable set an 'lab approximated arbitrarily

closely by opeg,olvlosed sets, and a measurable set is
"almost"a Torel set.

*T
More precise , ;:if E is measurable, and' E> 0', then

-14%-
(i) there exists an open set G such that G E and. m(G - E) '< E ;

,,;-
(ii) there ekists a closed set F such that F e E and m(E F) < . ,

(iii): -there eXists a Borel set H suc* that E c H and m(H - E) =

1901 ,1 Ktiht
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This is about, as Fa? as it is reasonable to go in an elementary book such

as this. We, shall, however, give you an informal description of the "con -

structiop'. of a non-measurable bounded set. The existencerof such a set is
t . *,

equivalent to the fact t.kat m and m* do not agree on all bounded sets;

and it enables US to prOVe that ,neither m nor mm` is even finitely additive.
% .

, ,,

For convenience we describe a non-measurable set in terms of the points

of a circle in the plane, You can "translate" the description to,givea non-

measurable subset of the line, by "breaking",the.circle and unrolling it onto
? .. ,..,\

a semi-open segment: ,Use of the cfCle' merely avoids involvement with modular
.

,

.
-,

arithmetic' and With piecewise congruence.
N .

It

Let C be a circlewith lanit cirdumference (i,e:, the length of the

.Circle, considered asa, simple curve,ls 1) . Let ..7 be the relation on the
.

. ,

points of the circle, giVen by l'I - P2 if the length of either arc P1P2 is

rational. (Clearly if one areis rational then so Is the other; we will refer

to such -milks as being "rationally separated".)4 You can verify easily that

is an equivalence relation on C 2: Let (C ) beithe set Of equivalence
"-----...... s, ,

Olc,-

classes determine by ;the relation*,.. . (There is an Uncountable infinity of
. . .

such classes; but we "do not need to use this -fact.)' Then.
..

,
.

,

C
\

U & = 0 ; and 'a e implies .that Ca' n c = 0°.a a 1 2 , .

1
a

''2-

,

Let ,K., -be,a set of points of ip whickcontain5.exactly.one point from eachK0

set Q (the existence of such asset K0 epends on the so-called "axiomof.
: e

Cpoice"2 an axiom of set theory). and let K
q

be the Aetof those points of

b which are obtained from Kb 'by':a pbsitive4(i.e:, counter-clockwise) rota-
%

tion p
q

, where q, is rational, 0 < q < 1 ,,and mere the Notation p
q

is -

."measured" by the arc length, q ,through which each point of Ko moves..: We

Sist the followinpr6Perties of the /sets K
q

, witn brief =Lents on the

proofs of these properties. .
,

.

(i) 511e papber of sets' K is countably infinite. One set of ail
'q

/ ,-

. rationals satisfying 0 < q < 1 is a countably infinite set.]

. ,
_ 0.i) If q r ,:K

A
is.coneruent to: K

r
. [K is the image of 1(

: q q .

y

. undei4 a,rbtation'of the plane 9f C About the center of C ;

a rotation of theplene is a congruerice trans.formsatIon.1 .
. ,

, .- u ,

' If q r , then .K n k = 0 ; i.e., the sets in the Collection
q -r

%. fic ) are pairwise disjoi,mt.
q

191-
.°1 9;5

_ . r.P
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. d" \

[If this were not true,.then it would

-1,

mean that.1ome poin
_

3"z?

of C belongs to both K
4

and to K' : Hence, exi t
1. .

points P , ,1) , of, K which map into P under the lat . nal
q - \

q
0 '...

rotations p , p .;so :that P , F
r

are rationa separate
q. r

, and hence from each other. Thus.-they belong to the

same! equivalence class. This contradicts the 'adsumptiogi tct
, f

3 contains exactly one Rant from each equivalence .

1 1./
(1.1M4.. k.) - K = 'C .

g'[0,1) ig
I-
, . . .,

[Ay point 4.K of C belongs tO exactly-one of the: equivalence

clas,ses of the set (0a) , Let' X c Ca . Then.from the defini-

tion of K , there e Ists exactly one point 1 c C
a

(notrs
0

.necessarily different to X) .eU41(that 1° catc zcsThe points
. -.0 ! -

X and Y, belong to the same equivalence class, and hence
- >.

they are ratidtally searated, Hence X, is the image of. Y
'`

under a cuesponding ratiO'hl rcit&tion. That is, X belongs_
..1.

\

.. .

>to one of the sets in.,IX
q

) , an hence U K
q

=-C .1/
. . , -

/

-We now have the circle C expressed as the union of a

number 'of pairwise disjoint

much difficulty, we can

and exhibit this set

eacli'-"es'sentiaily congruent'
\ *

Ko -M. and m* were

able (i.e.Ybelong to B
L

)

s

t
/

count
t

sets, each of which s Congruent to K, . Wi,hout
t / -

"translate" '"cback to the semi-open line aegmen:t -.

as a countably inf mite 'union of disjoint se. s I
to the set K.1 o [0,1) , which corresponds ip

to agree on K , then K would be Lebesgue Meakr-

and so would all'of the "essentially congruent"

°Sets. Moreover each of these would.have the same measure as K It follows b.,
. .

from the countable additivity of the Lebeague measure on BL , and fromgthe

archimedean propertx of the real numbers that ether

(i) m(K) = 0 , which implies m([0,1)) = 0 ;

(ii) 9(K) > 0 , which implies, m([0,1)) > 1 (and, in fact, erea'ter

than any real number).

or

,

,

Each of these contradicts the fact that

K is not measurable.

s not too difficult. to prov

about' non-measurable sets g
4

m([0,1))-= m([0:1]) =1 . HeriCa

the following statements about K and

nerall
.

.(i)' Every measurab e set of positive measure, contains a non - measurable

subset. )

.3,92 9 G

r
o ":77:

-
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The complement of every non-measurable bounded_set in an interval

which contains its, is also non-measurable.

If K' it the complement of K in [0,1] , then

(K) m (K') > 1 , and hence m*(K) m*(Kt) < 1 ;

more generally,-these inequalities hold for every non-

measurable subset .of (0,1) .

,

:

r
x. (iv) As a consequence of (iii), neither the inner nor the outer

Lbesgue measures (on the collection B. of all bounded sets) is
.e.

finitely additive.

We remarkid previously, that there exist (noteniquely) finitely additive,

con4 ence-,invariant, generalizations of'length, which-are defined on the
whol cq,110otion B of bounded subsets of the line. To prove this statement

0

and exhibit such a function is beyond the scope of this -look, but we remark

1tha w,.,..hout too much difficulty, the following properties of any such func-

O

.u can be proved: $

(i) 1./(K) = 0 , where K is the.nOn-measurable set constructed above.

,If G is a finite union of open intervals, then u(G), = m(G)
,

(where m 'is the Lebesgue measure). °31).,-1====----701'4,P',

(iii} We-have seen that every-bounded open, set G is .a,countable union

of pairwise disjoint open intervals S4 ! for all such G-,
.

u(G) > m(G)..

(iv) 'If we add-the additional requirement that, for every open set G ,

as in (iii), 4(G) < 2(5k) , then µ .agrees with the Lebesgue .

measure function, ni,on the collectiOri B of all-bounded_

LebesgUe-meagUye sets./

. °

'0

1.1 0 °
1:t

°
This is as far as we shall go in the treatment of linear measure on.snb7

sets of the line. Fro the brief sketch which we have given you can sed that
.

. this, is ascititetarg-;Ond. subtle subject, with results whibh are certainly: not
1!.

intuitively obvioil There, are similar theories for area measures.on subsets

of the plae,n,.for
,

volume measures in, space, and these..include ref:ilts ,

, .
.

1 ., .Whichare even more surprising. Beyond thisi'there are.theories of linear
0 7, ;-,

A tt.!, -nleasuie_Vlubsets:6-1. the plane, (first developed :by Caratheodory in- 1914)

e

and theories of area measure for non-plane setts. Not surnrising4, tie more .

general 'linear measure of Caratheodory applies to the set of regkifiable simple
0



curves; (e.g., .the grglohs 'of continuous functions are measurable sets in this

theory). Moreover the paratheodory li4ear'measure of` theimagi of a recti-

fiable simple .curve, coincnes with it's-iength. (Here we understa, that

both the linear measure function and -the turve length function are extensions
-

of:'the same length function for.
.

segments-.)-

` °

t

f

-rN

Oh,

p.
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chapter 3,
-

THE MEASUREMENT OF ANGLES, AREA, AND VOLUME

3-1 Intrtduction (6 .

Our treatment of angle measurement will be litited to a.discussion

anii1Rs. The measurement of .ang1(7stha many features in Common with the
-... ,

,

of length:, 1.:011ere are also differences. Three fundamental

,s

I

--"A 14

of

107.Pale

measurement
,)

differences are:

(i) The ralie`of an angle-measure function, on the most natural

c..

4 o range, of 1-1e most natural domain of elementary lengthrmeaourable

objects (segments and their empirical coUnterparts) is, as we

domain of "Dimple anglps", 'is an open' initial segment .(or

interval') (0,r) of the positive real numbers, whereas the

have seen, ,the whole set, R of poSitive
.!

4

(1.1) Similar angles are .also congruent, a statementwhi,ch'is, Of
.

course; not true of .segments. This itpli4es that the values 4cf-

angle messuremerct functions should be 'unchanged under similar-7

ity transformation of the domain. (In:particular, corresponding

angles in different scale models of the same ObjectOlre a

a congruent, and hence'liave the Same measure.) -

(iii) Angle measurement is related to length measurement; A that an. .

J
, ,

angle,measurement\function (the so-called radian measure function)

carc'te ti in terms of the, concept of length. In this sense,
, .

if lengthMeapufavient is taken as a pTimarx (fUndamental) measure
. .

then angle peasurement is a secondary .(derived) measure. (These
.- . t , ,

ideas wilg-be mag precise later.l.
r -)4.: t

book such as this1
where we ageit&i'iglan overall view .of measur%

'fIrG

In a

I.

:functions gene;ally, as wen as.a detailed tiew ofsome yta icular measure

functi ns, cis quite_natural "(in anapproach to:the subject.of an
s .

measureMent) to ,compare and contrast the-situatiOn with our pridr.t4eatment

of le h, and to make the treatments as similai as possible. Ifwe do this,

the first things that wenotice is that there are surprising,Zif7

,fdr'ences of language. These differences are not only historically interesting,
,

but there is little doubt that they affect our thinking, and that they are

S

"IL

195 19 9
.

.



et
responsible for some of the awkwardness, and,difficulty, whfch is involved'

v. - ..
in the study of 'angles and angle measurement. ,-,...- . .

In our treatment' of'an-gle measurement we pay Daaticular attention ,to
--,,,-,

these language questions, not-because weare proposing 'plat you immediately

.6.opt a nawclanguate, but because we fee; that an awareness'Or these language

.differences; wall help you to a better understan,ding of the real. (&.e., non- .. .

.lipguistic).problems involved. Moreover, by using terms.which are parallel'..

to corresponding- terms in the theory.'ordength measurement, we can craw on
*

. . .

. , mach of the development already given for length.. 7-.',I. 40
4.1. .

-Befor'e becoming involved in details, we list some of the differences

and similaritles in thetermihologies of Itngth measurement and angle measure -'
'

.... . .-ment., The ditcussio n is rather informal, in the sense that we use a number
, '4 _

of terms not yet formally introduced in thra book.
-

. r .

...
1., In length measurement (and, similarly, in most-tmeadurement situations:.

e.g., area, mass, 'time, intelligence) we have a word, in 'this case-t . -

"lengtn", for the attribute
'

being measured. As we have seen, there are

- certain liffiCuities connected with the possibility7of actually defining

th'ee attributes, but the prevalence of such wcirds euggests the prob-
e .. ,

,.., ability that.there a;e. ativantages in having names for the attributes.,,,.:-.. ., ,
.7. ,..--,-- y ' . _ 5

For angle measurement 144- Might consider thtt ,_1.p.ngularity""is such a
. ` . ,-

word, but the mere existence of such a word is not enough; We ,must. , - ,..

only have ilt,`but we must use it. (While we.talk oil' the len _
.

.. stick, of a segment; of a curve, and so ion, h,T.,T often (if ev dip we
.

fefer'7 DO' the angularity of an angle or .of ,a-,.rotttion?,) i o, might be
N \ ,.

inclined to argue that angle measgre (or angular measure) is _a suitable, .. 0' i
- expression to substitute, for length,, but 'esyou will recall- frdm the

'.

previous chapter,there are good: reasons for being able to distinguish-

between the length of an objeCt alidthe length measure of an object.

Thus we were able to define the length of an object to b,e -the length-

equivalence
........

a

dlass to which it belongs (e.g., the congruence class for

'segments; the plass, under ,an empirically determined equivalence rela-.

tion for "rods"), and we were able to define the length measure or

linear measure of an object to...be 5. set of ordered pairs, each con

sisting of 'a length., function and its value. on the given objects.

Recall that any one of these ordered pairs determines the length,

and this iS what is involved wheii we: say that, for;pampiA,i'vt.he length
4/ ?

of a particular bb-j-gci'-is feet.) The parallel,s1fUittion-zaKe
s ,

angularity Timid be to fine thd angitarityof.an object to be!.
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certain equivalence class, and the angularity measure, or angular

measure, of an object to be a set of ordered pairs; .each consisting :of

an angular measure function, and a .value. Tn What4eill6wt we jlise;...ppg

terms, "angularity"' and .'.' angular measure" in, this may4 s ag tii be rable4,1,

to bring out the similarity between lengt1 and angularity, and between-

linear measure and angular measure.
*.

.

2. We have no single name for an object in the common:domain of empirical

length measurement functions; for simple mathemattc41 length-measui-ement

functions,' the objects are segments, but when the domain, is extended the

objects may be curves, or they may be rather general point-sets., in' the

case. of angularity-measurement, NI-ether empirical, or mathematical, an

object in the domain is almost always called an angle. Sometimes we

use the word "rotation", but then we usually complicate matters by talk-

ing about the angle of rotation, and then referring.to the measure_ of

this angle. Clearly theie, is no reasott we should not regard rota-

tions- as being elements of -4 domain of angular-measure functions., and
-

talk directly about the angular measure,of a rolagion: Angles
. "

simple angles, see below) would, then correspond,teg:ta n simple rota-

ti ns, just' as segments correspond- to certain. siiple-curves

The related terms ."length" and "distance" for measures, have 4?

their parallels for angular measureS,.,, We shad te# :"angular

thedistance" as- corresponding to "distanf e" tht

objects WhiCh constitute the domain of.an "angular distante"fUnCtion

are, of coursei,:pa

Just as there 'are

distance funCtibn

reasons for doing

irs of rays with a common end,point,

good reasons for s er,g.mt 1 ng the related idea's bf

and coordinate functio there world seem to be" !

something similar with respect to angles. Thus,
- .. ,

restricting our attention to the set of all coplanar rays With E9.
..:.,

. . _.
common vertex, we have an angular distance unc t idn Ion parrs of rays, and

c,,,

related angular c00%.dinate functions.
..-

The ois- no ne4 .(at leaat- at
.0.-

.
., '......--.---- ,

th&eleTentary le;reJj) to introduce ' negaglte i4g le s .. .diegative
/ :1!.':.!,1,

ood

ced

__sun hers enter thOpialinVlis use of a sy-amietl. interval 'o f 4e.1, n

e.g. P7c,10,1) . as'thv,,range of an a ngular-,coardinate ituictj.oii 1, but
., .

there are .no_ negative ,iaelaiber's in the range 'It. an angiTar measure rA01, ,

cti iOn . This is parallel to the-use, of the: 900,"Oft. all 4t4 n421nb e#
. . _ - . _ -max: ,

xiDt(just the positive reels) for coordinate. ions ofi the line'
, c .. 44, : ' .;.,,

.c , ,

stance fUnctions- ,4nd.-;:04ATelat ionship between coordinate fun clioili- an

is luiti: s fthila r for
.

both-angular and linear mea supments . FAvbit a"

- : --. `. .1; .
I

.... , ' 1. . A'

0, - 't.!...

l',...)
. t . . . '
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mathematical, point of vielf, this similarity is directly related to the
. ,

separition properties of lines and planes:- a,line with a pointremoved

is the union of two drisjoint convex sets

with a line removed is also the _union of
, v -

.(helf-plaxes).

(half-lines), while A plane

twb disjoint conVex. sets

Of course we need to consideg both positive an-

N:t discssioi7O-f-the mea§urement of "directed angles"
1.-

,

but ihese bear the same relationship to the notions

negative numbers in a.
(

d "sensed rotations-,

f angle ant rotation as

boriented (direcied),segment bears to segment, and t ere,is no more reason to

ifitrdde4_negative angles (with negative angularity), thati there is to intro-
-,

. k

e negative segmen (with negative length). Iri'lactis we pointed out

inSection.2-1tthe idea t t is really, involved neA-ds.that of a vector..

The all d.irected segmensn a line with the Same init
.

ial poi

or_spacLe_over the real nwilbeAs. -16-sented./ra'ations
.2 > e .....--_

uation is similaT: the q

'It1.2 h a oMmori:initial ray , is alf

reels... Moreover by introdu newprop iate equivalence rel9tions;

,

equivalence classes of.all directek'segments on a line, and of.al%

plane rotations at-a point, become.17dimensional vector spaces

40f all sensed plane rotations at a point,

vector" space over the

reels. In dis.cussions.Of""angleA bf any size" it is'these xeef6rrotatlihn6
,

or directed angles, thatiwe are aoncexned with? and the 'profess ot,giving

angular measures, to these ':angled"; using the,21.111 set of real numbers as

range; is nothing more thari,the process of setting up isomorphisms from the

'vector space of sensed plane rotations to thevector space of real numbers,

a vectoi. space which is easily .shown to be isomdehic to every 1- dimensional'
-

vector4pace over the reels.
, -

.44r4
To sum up; If 13'e are to preserve the parallelism of linear'and angular

measures, we should consider rotations as generalized angles, and hence as

elements of the dOmain of angular- measure functions, hut we should not con.

'sider sensed rotations as elements of this domain. Sensed rotations, and

directed angles, are bettar considered as vector quantities, for which

appropriate veetor measure functions are mappings into lector spaces of
1 .

. .

appropriate dimension4,:\

4
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3-2 Angle Measurement From Standpoint

You will have noticed that we have not yet given a definition of angle;
.

Fronk an empirical standpoint there is_no more need for the use of a single

; defined term "angle ", for an element in the domain of an angularity-measure-
.

ent function, than there is for the use of a single word in the corresponding

situat-ion for length. You will recall that we did introduce the word "rod ",

which was used as abbreviation for "element of the domain Of a simple empiri-'

cal length function". In this section we will use the noncommittal word

"wedge", in much the sae way. .In the following section, in which we deal

with the corresponding mathe6tical ideas, we will need to degne "angle",

just as we needed to define "segment" in,the formal treatmentof linear

measurement In a geometrical context.

Fromian.empirical standpoint, we must be able to recognize a set A .4Df

objects which possess "angularity", and we have
,

tb establish empirical pro-
°..7V

dedures,/or c paring the "amounts of angularity" which the objects have.

(":Angularity"Ew not heed to be defined.) These procedures will ,lead to

the estahgshme t of a certain angulagity structure on the set A , or on

w.s* X of ec ivalence classes of A , and we will look for functions which

'map X isot$brihically into thepositive teals.

In thb s t A of objects which possess angula ity, we might includ '

such things a wedges, ordered triples of,non-collin r points, pairs of
.

rods which ate joined at one end, certain pencil marks on pieces of paper,,

and. certain
. .

halk marks on chalkboards. We use the vague word "wedge", to

,describe an of these objects, and, at least initially,'we assume that" our

' wedges are bounded by pairt of "rays",.which are not,collinear (and hence,

of course, not coincident). ,We shall have more to say about this exclusion
.;

in thekraat emat-icArdiscussion of angles and angularity. We also restrict

otr notio of wedge, so that each point of a wedge lies either.onl.or on
.

one side f, the line determined by one o its boundaries. If we wish,

these re trictions can be modJ,fied later to extend our domain. Fbr con-

veilienc we can picture elements of our domain like this:

00(e

:1440044.

1
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, As in the case of length measurement, we assume that there % an empiri-

cal procedure for comparing our wedges, and that this procedure is "perfect"

in the sense that.it enables us to establish an'equivalence relation ("same
. -

angularity", denoted by » ) and an inequality relation ("less angularity",

denoted by < )on the ,tiomain, and that the relation < carries over to the

set' X ofequivalence classes of A .

We assume next that thereds an empirical join operation for wedges

(a binary operation which may ke iterated), and that joins are plane objects,
% .as suggested by the diagrams.

This join operation (*) has the property that the. join of two wedges need
.not be (or correspond to) a wedge. We resist the temptation to modify our

notion of wedge, so bz to make the set of *edges closed under thd join.opera-

tion, but we do enlarge set A to a new set .(B saywhich includes not,

on4e the set A of all wedges, but also the set of all finite joins of

wedges. We assume that the empirical equivalence and inequality structure.

-can be.dxtended to this enlarged domain. (It does not require too much

imagination to sett how thimight be done'aipirically. If we think of our

wedges,asvigid pieces of thin cardboard,An comparing one finite join t, ...

.'edges with.another we are still involved, in arvisual or tactile comparison,

and.the fact that our joins might "spiral around" many times doesn't

comp/icate.the comparison procedure ;in any essentpfwv:77wercall-gount

directlythe number of times the join spirals iaround. But, as we.shall see,

this empirical simplitity does not;extend''readily to the Mathematical theory=.)

'Without stretching' our, imagin4tions too

emidiricaI procedures suggest a.structurekr

cladsea of our enlarged 'domain B under the

far, we can assume that our
-

IS (the set of, equivalence

extended equivalence relation)

which is, exactly as in the case oflength and rods, a densely ordered,

"

90d
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C,

abelian, archimegean semigroup. However, as far as our subdomain of wedges

is concerned, there are significant differences: the set A of wedges is

not 'Closed under the'-join operation, and the archimedean property has to be

.mod'ified-to-rsbitething like: "given any wedge a , there 4 a positive
.

integer n stich that the iterated join na is not a wedge." The order

relation op the sabset 7 is -still dense, and the set of wedges has no

least element-4nd no greatest element.

We ean.*establish an empirical structure-preserving measure funAion from

the extended domain.Z to the positive reals by eitherof the approaches,

previously-used(for setting:up sillar .functions for length measurement. The

"unit" approach (43n which we first select any wedge as a unit) has the minor

advantage.that, we could lesoribe it on the 4omain of wedges ;t going out
yr.

of the domain. In the elterna'tiveapproach we firs-C,set up a ratio s c-

ture, associating'a positive real number with each ordered pair of eletTen s,
Alet"-.

Of the domain. This involves the comparison of arbitrary integral multfples

of redgls;tAus the modified arcimedean property

carry out this procedure on the restricted domain

Clearly, the situation,is very sim17-3.ar*W'r

ensures that we could not

of wedges.

t'VEch"We discussed for
-,-

the empirical measurement of length. Let us assume that we obtain, by this
1

empirical procedure, a set of angular measure functions, which, with respect

'to'the structures involved, are lsomorphisms. Let
g

° 1"44 -1-:

ig

be such a function. Then n wi

a a2 are any two wedges with3) , 2
.

41 1

the reMaining.A.ys3are collintar

suitable tel4or collinearity),

N ape the,*(espirical) proper

the property

WI

(this implies,

talat if

when we foIPthe join,

,

Of-course, that -we have a °

&`c°
,

then

where
Pt

n(al)

p does not depend on
, -

a
1

/

=

and' a
2

Moreover the function

/201 .
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1 --

restricted to X , will_map the incomplete structure of A
t

isomorphically

into the interval (0,p) ;'p -will be (as far as can be determined empiri-

cally) the least upper bound of,the rangeOrtte,reqiicted function nIX ;

and 0 will'-he the greatest loweribmnd. - .
,

As in the case of length, we can show easily that the furibtions obtained

by composing these empirically determined functions witfrpositive,similari-
.

tiesof R
+

(intuitively: multiplying all values by. the same. positive .

real number) are also structure preServing. The complementarStquestionj

"must all structure-preserving functions be related:in this way?"; can

)
only be answered affirmatively if we make further assumptions (such as the+

assuution.that the functions n and 11X.. are onto R
+.

and (0jp) res-

pectively) and clearly (as in the case of length) theie is no'possible way,

of deciding empirically whether such assumptions are, in some tense, neces-

-'ary. For empiriCal purposes the set of all'rational numbers in an open

interval (0,p) will be quite adeqUate for the measurement of angularr

onthe domain of wges. In the next section we shall see that the corres-

'ponding question fora.ngular measurement in (synthetic) geometry is related

to the Cantor- Dedekind completeness property: if we assume this property

as a postulate; then the anglereasurementfunctions for-simple angles Will

be onto an open intervalf(0, of the
.

positiVe reals.

(Cf. Exerc se 2- , which- SiloWed that if 11 , q , are positive realsf .

then the only is hism of the open iOterva Of reels (b,p) onto the 1
. .

)

open interval (0,q),, Which preserves (where,rilevant) s'Adition,,also

preserves order; anYthat it is the similarity trahsformatiori x-4 .9x 1
'\

P v
..a.--0/

_4
',. ,

\

This result can be generalized in the manner of Exercise 2-2.19, and the
, J i AP
.r, )\ remark following that exercise.] -

, .

.
;Ole structure olthedomain A ofl.liggAs can'be establishefi etpiri-

cally in still 'another way, by usinerasiorocedUre that has much n colon with
,

the method, used for establighing a length: structure on the sei of broken
r. e,

segments. We shall Ascribe this proc , because'itturns out to corres-

pond closely-to the
0

lest way of handling the comparable question in the '

context of synthetic geometry. We antic*ipate_sligrit1yby_commenting that
4

one of then difficulties in handling the question of angle leasurement

in synthetic geometry, is that the previously suggested empirica procedure

for forming, and comparing wedge joins is awkward to' formalize tj thout using

the concept of rotation; and this concept is tuWrisingly har to introduce

into the formal structure of geometrys While we wish to cp ider this in-

tuitively simple concept eventually, it is debirabI to avoid it in a first

202
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approach to the prloblem of angle measurement in formal geometry. his can

. be gone if we mimic the empirical procedure which we describe below. If

you are able to follow the empirical procedure, it is not hard to "trans-

late" the various steps in order to Obtain the'correspondingtormal mathe-

matical procedure.

. .

Sums ofWedges. If you refer back to the method whichowe-used in Section

2-8 to set up an eqUivalence,relation on the set of broken segments, and

to-obtain a structure for trills set As an ordered semigroup, you will see

that the fact that the constituent segments in 'a broken segment were joined°

end-to-end, really didnet4play,any role. Because of the fact that we were
, .

fOrking with equivalence classes, we could just as Idell have ponsildere&

' ''tha't we were working with opSeet which were. just finit4 sets of segments .

..N.

.(not necessarily ,joined), and that we defined such sets to be equivalent

if theTe was a piecewise congruence of their elements, allowin for decom-

position. On Such a domain,' a formal "join" of two members (each a finite

set of segments) could be defined by using" the union. QuetfOns of -

. .
.
3oininess could be..handled wihout real difficulty, and we would obtain a

I- \,..--- .
,

corresponding',formal join of equivalence clagse6,. This operation would 'be
.t

14110.;,,,,I,i
commutative and associative, it ,would be properly related t, an (Oder',

relation, and so on.

.

Let us describe a similar procedure fOr wedges, keeping in mind that

the big advantagetin working with extended joins of wedges (as before) or

`:with "formal suits" of Wedges, is that we obtain an enlarged domain, Mich

is closed under the relevant binary Operation. Thus'we obtain all of the

advantages ofworking with a semigrodp, rather uthen with an "incomplete"

structure, in Which jOins9Qf wedges need not exist. In this way,

treatment of angular measurement.oll the enlarged domain becomes virtually

identical (except for language) with our treatment.of length measurement,

° leading tqyangular measure functions on the enlarged domain. From these

the riecessary measure furictiOns for wedges (and angles) are obtained by

merely'restrketing the domain.
.

Let a, , bi , denote wedges. 'By a' formal sum of wedges, we

mnean simply a: finite get -61.-edges". 7 7

W (a a ...* a.) .

l' 2/ ' n

Such formal sums are, of course, equal , if and only if they contain the
P '

-

same elements. Because a fortal su9 is simply a set, the same wedge :

. . _
, cannot' be repeated in a formal sum. But equivalent wedges maybe

.

contalmed
a .

in the same, formal, stung 'arid this is sufficient for our purposes. .e.:V

, 4
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If ai,E W; and i£, ai - a! * 8.1 , with neither a! Trox--e-Ati
1

7 .., ...

. then the formal sum, WW , which is obtained from W.by 4ubstitutflig--al ----- --
1

% 1.t

1,

and a for a , is called a decomposition of W . Anyformal sum
i

0

obtained from W by a finite number of such steps, is called a finite

decomposition of W . We define two formal sums W
1 W 2 to be

equivalent ,..(W1 W2),, if there -are finite decompositions WI ,

of W1 , W2 , respectively, such that there is a 1 - 1 correspTidence,

of the elements of WI and 1 , with corresponding elements equivalent as

wedges. If a simple wedge is considered as a formal sum, then Al agrees

with - , in the sense that, for wedges a,b, a,b if andonly if

;fa) (t) . We assume that is (empirically) an equivalence relation

which, in _sense, "extends" the equivalence relation for wedges. We can

think-gfanempiricalprocedureforomnparingtwoformal
0, 7-

and Wia = (1);

j
) , as follows : -

I a.
c

If there are any common terms in Wa , Wb , discard.these.first. Let

.,
. WI W. b$ the residual sums. Take any, wedge, ai , from WI' and any

a , b a
, .e

Or
wedge, b

i
, from WII , and compare them as wedges. Exectly one of the

°'- \
rel.ations:ai -.bj

i
,a<bj ,bj

i
<aholds. If ie.fixet relation

holds,discardai an* b
j

, pull a second wedge from each-set, and

compare them, etc.; if either of the other relations holdg (say 1 < b")

find a bl such that a44* ID/ and b/ k10 . (Weali4 t 1ink of a
J J .1) 4 e y .

; in our mathematical treatment, the congru-lo4. as eqAivalent Co "b -
J

ence postulates for angles will ovide us with such a "subtraction ", and

this is why this simple,procedlre carries over successfully to the mathematical
I. .

context.) L.
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.A

-10

/' t1N '-'1-e
,

-.1so:cm:, !1..g itedue eventually to e.&inglk we.4e, and-these are equivalent as
ytts-7* - -

-,-

21. "T we'de< then . W ° 0.nd W 4.1 be- equivalGtt as formal sums(I , , ' , a b ,

- e , .

, i.IKVe t.,'
..". / I

, 4 i,

t AP -:.

,fo' .-ci;-11-1".*V.; " r'k
, A :. t.

r , ,- e_ --.,,,,%,.e.
---- ,...., , ,

If W" is the fo I sum. obtained from WI" by remoVing....,,a' 4. aid
-----,_

<0

a
0

...
Vb" the formal sum obte'rined fr, / by eithr, remov ,....b) tif a, .. -b )

,---7---- 'I--L.' - 3-,--_,,.b.i
or by replacing 134 with /0,4

.' J' a..-.: b ) , ,then ttle.-ILittbetcilL'telA in ,
1/4V. J- ' 0. _''?

W" is one less than the number OfAerms in Wt , and the nunit4n.icf terms
a . - a

-

in W" it either the same or ne less than, the n ber;Of terrq in 141 .
b 4 !

......"'.k, b

., " 74
Thus at st one formal, stun h s been lieAuce,kin''it6 nAlhber of terns) and

the other-hp's not increased. nc
.'-',-;

, e co.... intt
.
ese fgd-rawing, comparing, and

-... < ." :;. - . .

"sAbtractStie if necessary e prcyce t terminate, :If and ,Wa b

/ I _
- , ..

ring ('<<) between formal sums/ Can be introduced in the' usual

b
if there is a ' ,W1b sto6h t.ltrat Wb bZ W1 and Wa is equiva-

,, ,Ji

0 .e1;

0 ' 0,

ScAlt,91 1 proper subset of W,1)- and, tee,* empirical procedure can be
,

o , ..,) ,0.*
,r . V.'''.

.1:- a 4 ..,% ) .1/4 k ,... -.1- -
%, 40ro es,Viblish this relation. We 9.seierkehat empirical eVedence jtistifies. --- .,

-ttiet4etsStrantion that- << fields* an order telRtion on" equivalence, classes of -
--", .4-

....,
,.

y- \
-

,fcrrmal s)ams. '
1; =:.' .1,-, :-- .,

--..

,-.
Tpe>definition -9f a Jain operation for "e valence classis forfal

-
'"" sums carr d-out!in the obvious way. Tf , are such etui,vellence,2

Ai:4 30 S 1.tc,1444141 , from. , . rbSskei`etively, with
T 2 1 2

4v 744 t
444

:;;N4en: faqr1.* Viol' CV, to be the: equivalence class or WI U (Titis should

)i).uitOrOdity' 4esistiremen-6. )25
1J , remind you 'of the: way: int which we used "disjoint unions" when 'Cuising

)6, '
,

fc. . A,

,

"-pig t= A _et-e2

le 0,

alder the set f dof wedges o be a subset of the` Set of,., ., _ --<,

.c .. -;./
his subset, the equivalence relations ...,, d 'Z'

it.'

.,,, \-4,."'s- r , 1

SO dp Jibe OrLiqrreIatiotis- < , and '<< , and the-join ap ratio s'cw-hite ...
.6.,-,

"0 %d for wedges/. The set of equivalence classes of fOrmal '41nie is :' ,..tk ")...:(-0*
p

ii' cally) ,.an ordered abelian semigroup, in which the set of equivaledce . 7)1e..0..."

v .
.secfglast,eop of , wedges is isomorphically imbedded. This, is what we ise. out to. s.'

,. .

,,.,- * - :rna.'"t

''"a.th eVe: 'Ole establis ent of suitable angular measure, fUnctions can now- `-"-- ."
,... it st

1...-`,...1*beoieri--ieriLout as yiefer e.

,,
' _s, This"-lis as far as we need to go in this direction, as our main objective

. , .
-r-was-tO des6ribe (in irrfro

which ilvirt.tgalg idept
. ---:-..io, 0-

40emat cal 'acriain. W

`on wedges.
-I

.r
/4

1 language of the empirical situation) a process

cal (but.,,move awkward to describe) in the formal

return now.to our general discpssion of angular

6..
205
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One interesting property of angularity measurement concerns the question'

of units! Because any open interval -(0,I)) of positive reals is a satis-

factory value space, if p < 1 then there will not be,a "unit";, i.e:, no-
element di' the-domain of wedges will have value 1 under the corresponding

angular- rieasure function.

,acc pt for the necessary modifications .res ulting from the restriction

ults for length measurement

The most important of these

"scale change".' If 11 and

of the r nge,to an optt interval' all of the res
-

have.theii-analogs for angularity measurement.

the relationship involved in the question of-

1 irre,:tmo angularity-measure functions, then for some k > 0* , T12 = xyll ,

d for- every a E A,

.ria(a)

- k .

is means that the relationship between two such ,functions.i.

/
fully dettr

ned if we know the value of each,function on'one element 10 E A ,.1.1n...
(.

r
)-

11

is

is ve-cel , for any a T12(a) = kn
I
(a) - .'

n

2 (

1

(

BAs you are aware, there are important connections between linear
sures d angular measures. If we take any circle with center at the

Y"4'.
eto a wedge a , and use any (empirical) length functiori

e circle meets the boundary of the Wedge a at,points and Y

)

, then

). I
ets

',1Ce013

.s., . t

1

0 1

206
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.A. . \

. . 4- '. . I '')+,
9 Li2.11.';11.-- r '!';' , .

and the ratio Oa denotes the-Parc of the circle) 'is independent
1

. X0-77) ',' -

of our ehoicse:of,circle and of.our choice of linear measure function. More-

over the function

: A -/R
+

defined by

FP ncides with' one o our'earlier established angula"? measure functions,

s range_ (0,1)1.1 In other words this 'function µrt is itself a

suitalple angular measure function, meeting our requirement of preserving

the structure of A . (This is the well:.known radian measure function.=

It follows that any angular mea'sure function differs from 1.1 by a positp9.

similarity.

We emphasize that all of the, above statements concerning the radian,-

Measure function have to be considered *(at this stage), as having only

empirical justification. In synthetic geometry there is a corresponqng

situation for angular measure functibns, but, in that c?niext, theoorres-
,

ponding assertions must be deduced froth the axioms of synthetic geometry

t.

There is a\connection between the relationship bAiangularand linear

measures, and the subject of "scale models". In a scale model, the linear

measures of an object and its seal* model diff6ty a fixed "scale factor°.

ConseqUently the radian measures (and hence the'angular measures Under any

fixed angular measure function) of corresponding angles on the object, and

,

on a ialIemodel /- are the same.

3-3 Angular Measure In Mathematics

You will recall that, i the discussion Of linear measure in formal

mathematical systems, we had tw quest'ons t.e.consider at the outset: e'
/

Whatgystem or systems should we coricter; and what should be our initial

q.,,diomslqThe first,question-involved the choice of geometry, end-We-d*i-.

sidered three possibilities: osical synthetic geometry, metric geometry
/' ,

(as proposed by Birkhoff,and used by SMSG and others),Iand °artesian

(coordinate) geometry. In metric geometry the distance/length functions

were ilostulated, and in cartesiatgeoMetry, they were easily established.

itt

k
J.
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7 tut'in synthetic geometry We had to do quite a bit of work inc.-order toi

establish the existenceof suitable length/diStance functions, and we dis-

1:.coVered that M the corresponding postulAtes,(the diStance and coordinate

s')

.

,

postulate in metric geometry were to'be established as theorems in synthetic# .
.. . , v.

geometry, then we rreeded,.. to strengthen the synthetic geometry by the addition
--

of the archimedean postulate,, and thp Cantor-Dedekind (completeness) postu-
.

. ,.
. L. .

late.. For angle Measurement the situation is roughly the same, but perhaps
1 . ..

the need to establAshsthe exislienpe of angular measure fUnctions (suitably

behaved with respect,id congruence and "angle addition ") in synthetic geometry

is nbt quite so ianportant, ,for the following reason: 'Using linear measures

only, we can star\with (augmented) synthetic geometry, prove the existence

oif°.distance and coordin4te functigns for lined, and*go on to establish

.''
coordinate functions f planes And space, using only the synthetic congru-

' .

, ence postulates for angle (see below). In the resulting cartesian geometry,

we cail develops. theory of curve length as discussed 1.n, -Le last chapter, and

the existence of suitablyObe ved angular measure functions can then be es-

tablished by using the theOry o curve length, as 14ed to Simple circular

arcs.. (This is, ofcourse, th adian measure functions are

formally defined; see later. ofcourie, be careful that, in such

a developmentef linear meas es for curves, we have not used the existence b

of angular measures, but thi does not present any serious difficulties.

One advantage of the us of the arc-length approach in the establishment

of the existence of suitable an ar measures, is that it is a natural

vehicle to usein 'discussions of t extension%of the domain tp'include

angular measures for rotations of us kinds. We shall have more to .

say about this below. But there is something not uite satisfactory about

this approach: we.feel, intuitively, that the empirical procedures for

angular measurement should have their Mathematical' counterparts, and that

we should be able to establish, directly, the existenCe'tf suitably beha e

angular measures in synthetic geometry. This can, in fact, be done, but

.,0.s you might expect on the basis of our experience with the,correspondiAIA

problem for linear measure)4.t is by no means simple. We shall give an 1-tv

outline only of such avteatment.

1-1-1

Angular Measurement In Synthetic Geometry. For linear measurement we
.

decided that our initial.domain should consist of segments. In the same

way, for angulal' measurement our domain will,consist of angles. This is

not as simple a statement as it teems, because, although there is. universal

agreement on a definition for "segment" there is no such agreement for.

2008 .
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"angle". In synthetic geometry, the elementaryidea.of"angle" cap be An--

veyed in many ways. For example;'

(i) a pair of rays with a common endpoint, excluding collinear

rays;

(ii) the point set union:of such a pair of 5s;

(iii) the union of -twa Pas as in (i), together with all points

"between" them; '

~ 4

, ....

(iv) as in (i), but. with rays replaced by segments;
f 4

4 iN
)

(v). an ordered triple of non - collinear points;
. , N

(vi) .a set of rays, consisting of -a. pair af'don-Collinear rays,

as in (i), together with all rays (with the same endpoint)

I which lie "between" them;

(vii) the union of all paysadrin (vi);

(viii) a suitably defined 1-1'hioontinuOus function from an interval

of real numbers to in-oppn semi-circle.

Remarks:

4 *
1. From the 'oint of view Of angular measurement,, there would be many

I

advantages in adopting (vi) as our deflinition. This would (in effect).

make an angle a "S'ekment of rays".' (The restriction of non-collinearlty

formust be made, because betweenness is not defined for collineser non-

coincident rays; see below.) With (vi) as definition me could parallel

our language and treatment for length measurement on segment except

'where _forced to diverge bythe'really-etsditial diT,ferencet. Moreover,

it would provide a simple and direct way to generalize the notion of4

angl , by analogy with the situation for curves: (We return later to .

this idea.)

2. Possibilities.(iii) and (vii) describe the Same point set. This point

set corresponds to our vague word "wedge", and seems ts:..describe most

closelythe,stm-phya-idal idea of. an angle.
, r,-

3. The 6clusion of coincident rays is in keeping with our original defini-

tion of a segment. There is no difficulty in later extending the

definitionof angle to include such "zero angles", or "null rotations".

21m angles are not needed in elementary geometry, and 9xcluding them

from the first stage of a discussion of angular measure permita1

j
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af a suitably modified archimedeantipAhoerty for, pair

ea /

,04.

and allows is to state results about angles withoUt the ne- to con-

use

a
,d,d

angles,

side~ special cases.

4., The exclusion of c011inear non-coincidentlys, permits us to introduce 4
._ .

. a

a suitable notion ofietweenness for pay8 with a common end point, and 0
.

to talk unambiguously.of,tne interior of an angle. , -.

Possibility (v) corresponds to the why that the angles of a triangle

are determined, and to the usual method for naming angles;

LABC.

6. Possib4itz (viii) is close to the one,which we will use (and genera

10-3-y- fortdis cu8s ion of rotation, but It 'requires that we find some .

- - °

o
way of making precise the notion of continuity which is involved.:' This

,

,k.
1,.

. .; .
cannot be done cintsynthetie gei-,i'Meti20, in an elements way.'

-

.

1-,-.:".,,,!Pq...74lia't
., .

,

.

... -.
.

-Notwithstanding the possibI; alytitigipt.of (vi), (ii) seems .to be the °"..

...
, ..,....

,(--:-..,.:.;- .,-...; .:..,
° k

most common definition in current use.'"'.46 therefore define an angle to be J-- °

r

the union of two different non-collinear-ys. This is consistent with the'
' ,.... ,

-,SMSG approach, and with the treatMentinithe important reSkrance [14] . .

..

.,:....

The main point to remember is that each ofthe bther suggested pos-

sibilities4determines 6 -unique angle, so that'if we use any of these,
,

alternate descriptions, there will be no doubt which angle we are talking>

about.

If our treatment of angul'ar measure is to perallel'that for linear!

measure, we should firseloOk at those postulates and properties which,were '

pertiaularly important 1.614'the theory of linear measure; and see what their-
counterparts for'angUlar measure Would be. Amen unterperts are the

following:

There is a sostulated relation of betweenness for (some) ordered'Iriples "

of rays; if 5 Is between Ca and 6-6 ,me write 61 - OB - OC. Betore'giving

the properties of betweenness we introduce a useful abbreviation: rays with . ,

a common end point are said to be co-halfPlanar, ifthey are coplanar, and

if there 'is a line through the common endpoint, and in the common plane, sueh

that the interiors of all of the rays (i.e., the rays except for their end=4

ppints) are contained in (the same)

,Une. (Any two ray whope,union is

which you may prove from the axioms.

one of the halfplanes determined by the

an angle,44re co-halfplanar; a fact

below.)

4
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The requiredprOPerties for weenness of rays are (c#f. 2-5 and note'

how closely these correspond t the congruence/betweenness postulates for

segments and points):

:) -->

k
BLq-1. If C

1
X Y -

3z "
then C

1
,X C

2
Y and C3Z are

palfplanar: In particular, Cl = C2 c3 .)

C 0

1,-

. / .

AR-2. Given three cifferent co-halrplanar rays, exactly one is between;

.4..
the other t.O.

.
r .. ''.: ; .

.1

"` . BR-3. The relation est-Symmetrlc_id W e_sense thai 4 Ei. - al if

' arid Only if a - 0 - a . .

,.,44,2, Ili'
BR-4. If CX , dri are two 146,s, then there areOrays-.5-k, 61 ,:such

that CX -- CZ - 7 , and CW. ,7 CX -..-; CY .

BR:5. Any four corhalfplanar rays can be namec in an order' CX 1 , c1C'

C 4 such that a -.Ex -A m:.,:e ithere).the notation
3 , .4 1 . 2 1 "-I'

, .

means that

are true.

all; 'of the.impiael'betweenness relations" for triples
. 2 vItt.

.4 V
ThO'Q is a relation of congruence on the set of all angles. It. has 'the

propertiesIcf. Section 2-5):

CA-1. Co agruence'"i s an egliivilence relation on the set of all angles:

(We denote angle, congruence by_ the symbol 541t

s

CA-2: Given an angle LAi,B., and a halfplane bounded by a line CX
.

there is unique ray: CZ whose interior lies in'the given

halfplane, and such that LXCZ = ZA0B

CoAgruence of angles and betweenness for rays are related by the

prPities (cf. Section 275):

CB-l. 0If
1

- -'C Z
1

.And C-2k2 - C-2-.)y2 CP2 1.and if

A2C2Y2 , then 2Y1C1Z1 LY2C2Z2 if and only
.1. ?'

if A2c2z2
la,

These properties aTe all valid in synthetic gvmetry but ibis not

necessary to take all of them as poetulatei:/Por example, the relation
- .

_ - --> 4 4
of betweenness for rays can be defined by: CX - CY - CZ if and only if

for every pair of interior of CX , CZ respectively,

CY+ n c -z) 0/ , ; and its properties can'tiadeduced. The congruence. -,-

-:,
. .'... . -- ,___-_-_-_____

lc 2l1

2 i
I

1I

.



properties, and property CB-1 , 'are taken as postulates. We have listed
together all of these betweenness properties for,co-halfplanar rays,

,

and
congruence properties ±'or angles, in order to show how close they are'to
the corresponding betweenness properties for collinear points, and

.
the

congruence pkoperties for segments.

Remarks.

1. One useful consequenbe ofprOperties BR-4 and BR-5 , is that if we
-add one of the "bounding" rays. ;c a!finite set of co-halfplanar rays,
then the augmented set is still co-halfplanar (but.not, of course,
with respect to the 'tame half-plane: see diagram): In the diagram,
C4 is the initial.half-plane boundary, and clT is the new boundary
when CA is added to'th% finite set of rays,. (CX1 , . . , Cy .

.

2. In geometry, the notion of the interior of an'angle is'useful: the
interior of the LACE is the intersection of the two hali-Planes

which are determined by Tr, clP , and whicl contain B , A , respective-
.ly. It is easy to show that P is in the interior of PCB , if and

--. --. --)

oni:1( if CA - CP - CB , and hence thak; the interiordf the angle it the
. ioo

e

4. hc, .., .union of the interiors of 411 slAh rays (i.e., the en rays, with the4
-

A40' common end point, C , removed).
,

. '
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3. We know that 'there. rust be some differences between the establishment
_ .

of ieng-th7Measurement functions and-the establishment of angle measure-

ment functions, so ge lookfor their origin in the essential 'differences
,

between the betweenness/congruence propeeties far points and segmentso

and the corresponding properties
lf

or rays and,angles. The key P'lt
of difference lies il the restriction of the betweenness. properties

of rays to those which are co-halfplanar.

/.%

An Angularity Structure for the Set of All Angles. We have no intention

of giving ;a fully detailed treatment of angular pleasure in synthetic geRmetry,

but we can indicate_wher the treatment must differ, from that for linear

'-'-:..:,mectsure,, and where the additional difficulties lie.
' '16'

N-- ,

-Mist of all, we _define an angular measure t'unctionigsro be a function
+, ., .

s,Y : A -4 R -..-kA dente the et of.-all angles)' such th.0-
--;v-

......., ..
..s.

, .

ci congruent anglea,h ve the SaIne-lalud 'under 3.- . fg.-

' 7,-4.........0-c-4- -"V- ' .'
(ii) if a - ErY - a , then '' "'..- 7'."-z1--

( . - ,...- t;
, -.. -,.

r(pccz) = r(xcy) + r(Acz) . .. ,,,,,,

1,..,

Let X denote the set of all congrtieice ,classes of angles.. Exactly
..

... _,..;

as for linear measure, we use the congruence and betweenness postulates to
''.6

-...

define a relation < On X , and to shoo/-:that -this is a strict totatk,order ' '
i

,. ---,-1
relation on X . In addition, it is damns.e......07 with respect to- tlle I-eta:7 ,!._--,
tion < ',, we can show t4tt X- 'has no least ele*nt no greatest element.

.--, ,

4),,O:c

ye. 4 " 1 -

4

-

'213-217 -;
^ ^



I

We next look for a join operation for equivalence classes, and immediate-

ly we run into a difficulty. Given any angles ACD LXYZ , we can follow

our length-join procedure, and show that there exists an angle

f

/*E' ,(with E pn the opposite sidd of M to D )' which is congruent to

/XyZ . Butdcontrary to the situation for linear measure) it is not

necesiaIthat 5,- 5 - a (see diagram), so we canno-4concl0e, from the

postulates, that thecongruence class of LDCE is uniquely deibmined.by,

the gi And even ).f it were, we can see some other problems. If

were4to try to define the join of the equivalence classes of the given

leFto :betrleequivalence class of:IDCE , then the angle classes which

arattdaineed7by LDCBt and ACBIEwould have the same join; and this

co
'k

considered satisfactory. You might think that we could

resolvOhea.u.difiuW.,ZY making some hiaor variation-in the definition of

ms

_.... .
angle, but this is not sod' the-difficu#4 is:quite real.

,,..._ . .

In order to avoid-gettingbogged down in notation;'4et us denote
._____.

congruence classes' of angles by letters such as a .. ,_and define
%

two congrAce classes a , b rof angles, to be coihalfplanar, if there

exist angleS, 2$6,, /06 in a , b , respectively, such that E ";and D
. /

--a --e -->r
are on Opposite sides of CB , and such that the rays `CE , CB , CDI%-are----iro-

halfplanar as previously defined. This idea can be extended to a finite .

number of congruence classes, without difficulty. We can then define (as for
-*,

linear measure) a join operation (*) for those pairs of angle classes
k-------

J.

e

I

21
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__-
which are co-halfplanar. Thus leads to a:binazy operation (join) in X

which, where defined, i'774.ffitutative and associative, afrd preserves order.

In other wards (X ,* , <) i Ells all of the properties of a densely orderedI

atielian demigroup, except that it is not cloSed under the join operation.,

We now turn to the question of whether there exist functions from X

to R
+

which preserve this (limitqd) structure. It is easy to see that any

= function which preserves this structure is an angular measure function; and:

conversely, that any angular measure function will preserve this, structure.

The situation is quite similar, in this respedt, to thdt for length functions.

If we try to parallel our procedures for the establishment of linear measure

functions,.we find that we need some sort of archimedean property. It can

be shown (but the proof is not simple) that if we assume the archimedean

postulate for segments, then there is an "archimedean" property for angles

in the sense that if a E 7,, then there exists a positive integer

n ,(n > 1) such that na (iterated joint) is not defined (i.e.; ilk con-

struction for the join leads to non- co- halfplanaa rays). We assume such an

archimedean property.

We
0
can now proceed with the construction of an

Y , for X , using our first method as for segments.
G e

take some angle class a0 e X as unit. Then, for

angular measure function,

That is, we first

any ee X , we compare

a with the successive joins 2a0 , 3a0 , (if they exist). If there

is a least integer n8 such that (n8 + 1)a0 > a let' n0 = n8 . :0ther-

wisp, let n
0

be.the least integer;such that (n
0

+"1)a
0

does not exist,

and n
0
(a
0
).< a . If the equality holds, 'we define 't(a) = n . Otherwise

O.

(using the postulates) we can form thel'unique "difference class"

al = a - n0?a0) (Notice that, while postulate CB-1 sets limitations

on the possibility of "adding" angles, it indicates that non-congruent

angles can always be "subtTacted" in one or the other order.) -

' If.we continue to copy our earlier procedure as, for segments, we take

n >1 , and look for at such that, n(at) = a0 . But, unless we assume

the Cantor-Dedekind postulate, we cannot prove that such submultiples will

alyays exist (and in fact, they need not. Fbr n = 3 , that is related to
''''4: ';t

the exiatent-e-of angle trisectOrs. In (14] , Chapter 19 it is shown that 4 0:.

4 ,.,,'.,., 4,
in surd cartesian geometry -- which satisfies the axioms of classical

.
.'.1"t-i,

1 synthetic geometry -- such tyisectors do not always, exist). Fortunately,
.

.. 4,1
..,

we can show_froethe classical postulates that angle bisectors always exist, I

. V.

4?:

a
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so we, can limit ourselves to binary.
expansions, andproceed'as for length

.(cf. Section 2-5 for details) to establish a gunction,

'T R
+

which, is bas6d on'' a
0

as unit. , We should then prove that Y. preserves

the structure o± X , and that; if we assume the Cantor-Dedekind postulate,

Y maps 'onto an open interval (0,p) of positive real numbers, where
p = Y(at) + Y(a") for every linear pair (at , a") . This is quite a

formidable task and we have no intention Of attempting it (A linear
pair of congruence classes of angles (0),a") has the property that if
/Ani d a= then ZA".CB e a" , w4lte.,a." ik the opposite ray to o-A0 ;

that this definition gives a satisfactory notion of "supplementary" congru-

ence classes, is shown in Chapter 8 of [14] .)

If we look at the alternative procedure, which we carried out in con-
siderable detail for linear measure on segments, the position looks quite

dffficult:' for a1 , a
2 cp 1 we need to compare arbitrary positive integral

multiples (iterated joins) m(al) and n(a2) , and these will not generally

exist. We might attempt to get around thiS diffidulty, by re-examining our
discussion of the corresponding situation in the establishment of empirical
angular measure functions, where we considered generalized joins of wedges,

and attempt to extend 1 to a larget.set X onyhi,ch an extended join
operatiOn, and an extended order relation, would be tiained, so as to make.***-'
a,*,<). an ordered abelian semigroup, in which ,..(X,*,%:) is isomorphically ,1

y
..°imbedded. If we could do this,°then we could carry through a ratio

ocedtre as for linear measurement, and setup angular measurefunctions.
. .-.,

(on.-'44.4.. ) whose range would be R
+

if theCantor-Dedekind postulate is
assumed. Thel4Tfunations, restricted to 7. , would give thedesired'aggplar

tmeasure functions. u, t....

4

Such a program can, in Fio, be carried out, using tlie."formal sum"a . ,

procedure rath*than some mathematical equivalent of the "generalized join"'
---,...., _ ..-

,process. (The difficulty with the,latter, is that it takes a
,

lot,of mathe-

matical development to cope with the empirically simple idea of counting,
-...

the number of rotations in a "spiral",of joined wedges.)

We shall tot give a detailed,description of the procedUre forNsetting
.

up a 'formal sum structure-,th the set of all angles7butY-the discussion
--------(in the preceding section) of the procedure for handling formal:s0s of.

' wedges, contains all of the main ideas. Formal suns of angles are simply
0

. .

.216 9 i>i)
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finite aggregates Of angles. A notion of (finite) decoRrposition for angles,

is defined using the restricted join operation, and this is,extended to

detompositiOns of formal-Suns. Equivalerice of formal sums is defined as

,piecewise congruence under decomposition, 4nd an ingcrup.lity relation (on

equivalence classed) is.defined in the natural way. (Roughly speaking,

fibr equivalenbe clgsses a , b of formal sums, a < b if b contains a

'formal aura such that some proper subset is in a .) Trich.otononyan be
,

., .4,409**

shown by using the comparison/subtraction procedure as for formal'sums of
%

' ,
.

wedes. A jdin operation for equivalence classes of formal suns of angles,
.

is defined as for wedges. -And so on.

There is a mass of detail to cope but in a certain sense, the

ideas involved are elemerp(ary. Ath enougrWoatience, and careful attention

to detail, we,feel-that it should be possible to carry
)

through the treatment,

ands bOtAriclerigely ordered; archimedean semigroup (A,*,<), in which
,7-

weWrestricted system 17, *,<) is isomorphically imbedded. (I.e.,

?if angles are considered as,One-eRment formal sums, equivalence corresponds

to congru'ence, and the join operations 'and the arder relatnns correspond.)

Among the properties which we would need to prove for this imbedding, is

ivalent to an angle if, and only if, it is less thanthat a formal sum
c
is,e

A

the particular equivalence class of suns which contains all linear pairs.
1

Such.a
progr

ram can;
7

structure , 4 , <)* , we
)

angular measure functions

in fact, be carried through.) For the extended

can establish a theory of ratios, and hence

(R+ , , )

whose range includes,both arbitrarily large and arbitrarily small numbers.

If the Cantor-Dedekind postulate is assume4, it can be shown that y is

onto, this pint is discussed more fully below), and that the restriction

of Y tdthe set of congruence 'Classes of angles yields a suitable angular

meas

i

(en a,,corresponding function, I , for A) whose
P

."-...

0,1:0_ a
-.

pasitiVe real nuMbers, and which hag the

71Tirzear plir (xl,x2) of and t,.... YA). p(x2)

tion

n open interval

that for

we would expect,

similaritiesdifferent angular measure functions are r' at d by

of their ranges. (Cf:aercise 2-2.5, whos eault
w P

,manner of Exercise 2-2.19, and the subsetAx

217 2 20,1
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-land scale change, are just as before, so'we do not repeat them, (The fact'

that (in augmented synthetic geometry) each suitable angular measure function

(for'simple angles) it onto an open interval, is proved below in the dis-'

cession of radian measure.]

"4 44 (

ladian Measure. Another procedure for establishing the existence of

faMiliersuitebleangular measure functions in synthetic geometry, leads to the

radian measure. Because of its importance we describe this briefly- out-

lining the main steps necessary to show the existence of such a function,

and how we would go about proving its main properties. Most details are

omitted, but we give enough to indicate that the usual elementary treatment

makes some fairly 'substantial assumptions.

You will'recall.that. radian measure .involves the question of the- length

of a circular arc. Our earlier treatment of curve length was so general

that we cannot apply it directly to circular azs. (It is not obvious that

a circular arc is a curve as previously defineM) Hence, in our treatment

of radian measure, we must first say something aboUt arc length. 'Let jPal

be any angle, and let 'C be,any circle with center Z ,and in the .plane of

LPZQ . Let_ X be any length function fin. space, and let a be the related

distance function. Let C n 5 = X and C fl Z4 = Y (Seediagram below)

and let denote the angular arc consisting, of. X , Y4, and those points
AP

of the circle which are also in the interior ofthe'angle ZPZQ, If A

denotes the set of all angles', we may define a function

by

r-,
. .

',3411; -).(,) -denated-the arc,length.of '2 as'definedwbelow.
.,

-. -
% _.

,.

In order that T Ae,,a'ssuitable angularlteasure function, we must,..

y : A .-411+

T(AZQ) =

gruent-angles, and that it carrieg,Irove that It gives, the same value to con

4110*.ilito.sum4,5 dan 0.1.a.6 show, Witt?very little extra effort, that y

'1dOes no depend..qn th'e AOice;'of X, , or on the choice of the circle. C ;
e

, other words, we obtain o hi y ' one angular measure function by this process,
,

cr=matter Which circle ;we use, or linear measure function we use.
,.

. ,,; .
.,...'5. % -, - %

- .> -
0

. ..
, .

., .,,,. .

...
.1 A ,

wT



Arc Length. We now give an
!
elementary treatment for arc length. The main

advantage Of the 'function 'definition for a simple curve (or any curve) was

that it gave us a natural way to order the "points" of the curve. .Fbr an

angular arc of a,cirble, we can order the points by using the betWeenness
I

notion for co-halfplanar rays- As mentioned-earlier, betweenness fbr co-

halfplanar rays cart be defined in terns of betweenness of, points of a line,
)

and it can be ,shown,that any finite set of co-halfplanar.rays can be ordered

by the notion of betweenness. tech ray from the center of a,circleland in

the plane of the circle) contains exactly,one point of the circle, henbe

any finite set of points on any open (i.e., without endpoints) .

arc can be ordered. It follows that a finite set of points on any angular

'arc can be ordered.

Let be a length function for space S . We take any n 1 points

X01 = X , Xi, X2 Xn = Y in order on XY , (see diagram) and define

X(1Y) = sup (
i=1

where the least upper bound is taken _over all 4inscribed" elementary broken

segments, X6X1...Xn .

c

,

In order to show,,that this least upper bound exittav we must show that the
,Attc

set of the 'lengths" of all broken segments X
0

is,ibounded. The

idea of such a proof ie.ab ained in the'4agram: there are halfplanes
$

0

rorlF15..

ti

1

a



..4- ._
Iwhich contain (except for Z) ZP and ZQ_, and a line may bg. taken

a halfplane,'parallel-to its determining line, and far enough away so that
-.4 ->' it does not meet the circle C . -Suthrr-er11iitelnUst11met---ZP and ZQ .

'Leti W
0
W
n

be such a line, meeting'1,4 in W
CF-/, n / -respectively,

-,-. .-,

-)
and meeting ZX. in W1 . Then a straightforward geometric proof shows

that, for each egment Xi_lXi %(Xi_iXi) , so that the length .

of the broken segment is bounded by the length'of W

Hence the set of the lengths of all such inscribed broke segments is

bowlded) and the lease upper bound exists. Thus the function r : A -) R
+

is.proberly defined- '

The fact that I is independent' of the choice of X . is trivial: any

other length function Xi is related to x (on segments). by %, = k'N. It

is a simple property of the least upper bound that if G is a ounded set

of real numbers, k> 0, and kG =)(kx : x e G) , then sup = k sup G .
. _

Hence % = k% on the set of,"angular arcs", and! therefore

, \ .

.4, . ), (2)
(5a)

x
1
(ER)

I 4...

The fact that I does not depend on the particular circlp C , isaii

exercise in the use of similar triangIts,'proportionsai-V, and the properties,.

east upper bound. [See,4gure above:of the-,

x(X1_1X1)

%(ZXi)
,

We can now show that T gives the same value On congruentrangles'

(a straightforward exercise in congruence, using the invarianceoflinear

measures under,congruence) and hence r _gives a functAon (which'we still.

- Y.. S.

Y : X -.4 R+ .
,....

,

'In order to complete the proof that Y is an angular measure function
..,,

.(and hence that r preservts the structure of A) it is sufficient to show

that If/ a1 , a are two angles, such that a
1
* a 2' is an angle, then2

.

1.- .
Yka

1
* a

2
) = 1(a) + T(a ) .

:,

1_ 2

.
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This will Follow from the related.result for arc length. Clearly any broken

segment inscribed in:the angular arc .a
1

which is determined on a given,

circle by the angle al , together with any broken segment inscribed in the

arc, a2 , will yield a broken segment for the arc al * a2 . Hence, from
-

propeities of the least upper bound, y(al) r(a2) <:y(al * a2) . The

proof W,completed by showing the reverse inequality. We can show

that any broken segment for, al* a2 has-a "refinement",(i)

which gives broken segments for al and a2 (i.e., which

includes as an endpoint the point where,the comm&n ray of

a1 , a
2

meets the circle: see dotted segments on diagram);

and

i

(ii) the length of any refinement of a broken segment is-g4ter

than the'length of the broken segment. (This is a direct

tit
consequenCe of the "triangle inea ity", that the sum of the

lengths of two sides of a'triangle xceeds the length of the

thirqgie4r

Hence, from pApert4s

and therefOre:

1 _

of the least upper bound, we get

y(aa.* <7"(8.2.)

y(a1)4 y(El) .



1

Thlt Y carries joins into sums,.and hence it is an angulgr measure

function. This important function is called the radian measure function

for angular measurement. It is easy to prove that r is 1-1 on 1

and that it preserves order.

We are interested in identifying the rage of y_. First of all we

should Show that the length of a semi-circular arc-exists: the proof is a '

c.f minor modoefication of our argument concerning angular arcs (our earlier
#0.

4,,s, argument concerning the existence of an upper bound hag to b al.

This is not difficult, and, .As a result", we can show that if k denote's,

as usual, the ratio of the length of a semi - circular arc to the length df

the radius (this ratio iS easily proved (as above) to be independent of

both the circle and the length function used) then it followd that the

range of the angular measure function Y is contained in the/ pen interval'

(0,v)

In order to obtain.an angular measure function as postulated in the

metric treatment of geometry, we still need to show two things:

(i) If (a,at) is a Iinear,pair, then y(a) + O) -Arc

(ii) Y is onto (0,v)

.

The proof of (i is a trivial extension of the argument'above which-

showed that y(al * 2) = y(al) /2(a) ; (in effedt, we need to ettend

the "additivity" theorem for arc,length).

The proof pf (ii) is much more interesting. You might thirkthat we

could prOVe i by noting that it is equivalent to showing the existence

--(ph-a- cio*l of radius 1 ) Of"angular arcs of any length r, where 0 < r < v.
.

But we do not know, that such arcs exist, anci if we try to prove that they
4

exist, we will find that the proof is no easier than it is tq.prove that' '

i5 `onto (0,m) . Ole truth of the matter:is-that neither property is

necessarily true unless we
,
make some assumptions beyond those of c. ssical

..., synithetic geometry. The sithation is quite similar to that which,cogceriaed

-2,) 'us when we were d'idcussing the "ogoness7 of length functionsonesegMenr4-
.401:- ,

,- and the same assumptIon (thedantor-Dredekind completeness postulate) is
. .

sufficient to enable uSkto cOMplete.the proof that Y is onto (0,v) We

------,4,, Ottlilfe'this proof in some detail, as it is hard to find in the 1.iterathgr 'J:
.

,

,,
4 6 1

, 4_.i

.
trici 15ecause,-in addition to the existence question for arcs of specified .

,:.-,'" 1
length anthaniles of specified radian measure in the interval (0,v) , it ,'

...?

'`-`-,"'

faablea us to show that, if,the Cantor-Dedekind postulate is assumed, then '

222
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4C. A

"trisectors" exist for any angle. (FC;e's "proof that ,trisectors ad6114:;i"-4:-
necessarily exist in a geometry which satisfies only the classical postulates
of synthetic geometry, see Chapter 19 of ,[114-1 .) Note carefully ttllat out

, proof of the existen-ce of trisectors does not imply construc-tability in the
.

claSsiipal sense: the proof of.non-constructability (which you can Ells()
'find in [14] ) is' still valid in the augmented geOmetry-which .ncludes the
CEItor-Dedekind postulate%s

Let r be *anY real' number between 0 and g . We want to show that
there exists, an 'angle whose radian measure is r . You till recall that
in conrs'idering Jthe corresponding "ontoness" question for length function,
we used-the feet that we could show the existence of (actually construct)
all Segments' 1:ihose lengths', Aere rational multiples of the length of a given ,.,

1 4segment. We anit expect, to do this for angles -- after all is
, . 3

rational number, and, We. know. that we canet even show (constructively) the
existence of trisee.Ors. In:fact cal that we can prove in this direction,
is that every angledias a`unique bisNitor. (We leave to you this well-

-
known and straightforward proof, inyolving the existence of midpoints for. -

segments, and congruence of triangles.) Fortunate1y this is sufficient: if
each angle has a bisector, we can show,the existence of 2n-sectors. for

.each positive integer n :.,' (This merely involves repeated bisection. )
Hence, using our 'join operation, &yen any angle a;, we an show the

existence a,ifigies with kadvii:rio*ut.ps.- r(a) ,1 for all of rose
';',;;;;-::',-. 4s.',....,:' '."':*:, ,::5,:/i.a... ,,AI . LA. )

" : -'1; ''`;'-',.; A'' ....,:', ..".1 '''',..V.?1°-,'' . , .

1positive i t Wm , hi,s:;:emptter.
. ..is less than it

,s, - ,.. '-'''- ,-,.. , . :-.:::. ::....5.e::. , 4 . 't ' . ,

t
t .' ' "` t''''' - ",1-i,, 4, ..s.,:c '' '' ,' ' '',. ',...'",Since a mat .be a right angle',-ifici.q.e,0i0.brsie-suie is ea.sil,V proved to. be s

-' : . '.4.4i:;",<:'& :, '*':,,."' ,..
-2 It.,

_ . - ,
-It . , '-''',,s7,75-''-*; ' r .'7' ' , ... ,we can thu edWind,iangles WhOse radle41..ihtzt.s, -ur,4sAare all numbers

Th2--/t (n, > 1 m <2n ) . [We pointo0tthe int4restikg fact the,2n
. ` '

numbers , with m < an , are jus those rational numbers between "O and2n

1 which have finite binary expansiOn his set of numbers is dense in the
, -sense of*order (i.e41 between any two here is aiother).but of.pourse this

`set does not include all rational numbers. It is also a dense subset of
.(0,1) in the topol9giical sense, and this is used' indirectly in,,the.
following argtzmehtn'

22a
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We return to the probleth of showing that there_exiss An angle

radian measure is r , for r between 0 and -m,. Let

K = m : in < 2n)---
, 2n

Ki F (X : x.e K x < r)

. ,

, ., v

It is not hard to show (from. real number properties) that neither Ki nor

K.isempty,and-thattherearesequencesofnumbers(a.),(b.)from
i

Ki , K2 respectively, such that ai < ai1 < bi+1 lo , for each i ,

and stzch that lai - bil . (In other wo ds, ai is strictly monotone
2
1

increasing, and bi is Strictly monotone decreasing; ai is always less

than b. 4 and the difference bi - ai Is arbitrarily small,or suf-
. 1

ficiently large i . The proof that such sequences exist involves

only properties of real numbers, and the proof is quitenrimilar to the

proof's of similar theorems about cuts,whic we have used earlier.)

-4 --)

Now let i = 1, 2,3 , , and let ZA1,ZB1 be rays which

(eXcept for Z in the same halfplane, and such that 1(LA1.,ZA0) = ai

I.T(/BiZA6) F bi

7

(See diagram.)

228
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, Let V be any line parallel to n
0 1 and in the same talfplane as...

-Neach, 'B.. . -..4ell each rah gi , and each ray )21i must meet 1/ . Let-_,-.,. .. ,..,:,. 3. :,,-.
.. .,

- ,x .., ' y°, '',1)0 the respective points' of intersection. It now follows f fromi-: .1.. , .

).;,, _." 0
the 'aktf!ati.: ,=Of ''`C., and, from the betweenriess properties of rays and

- points, and the relationship between them) that, for each i ,
1.' .' ..' , ..1--.- .. . -4 -4 -4V;t

-4
''". ZA , - ZB i Z - ... - ZB

1i a. Bi-1 ai,

and Y

. ...?...o- X2-. "... - X. - Y. - Y.. - :.. -
. It

3. 3. 1-1 Y1 '_ `,
- -- ..> ...Hence we have a senuende of segmet4p; o'i = (X.Y.) , such 'that ci+i c

.for each i . It -21,1-1-crws from the Cantor-Dedekind postulate, that

0 a., 0

would: obtain two different angles, each greater than or equal
AiZAO and each less than o'r equal to every angle LB ZA .

If this intersection were to contain

ai

more than one point, we \

i

to every
This would

imply that the qclifferent') radian meastts of these angles e9 similarly
related, and hence that the intersection of the real number segments
(a b 1] contained at least'two different numbers.'. But it is a straight-
forward real number argument to prove that 2 (a. ,b is the single

,o 4,
-real number r Hence there is a single point L in

ZL determines an angle LAOZL and, because the radian measure

is order preserving, we have for each ,

al 5:- y(LIZ L) < bi

Hence

'set out to show.

d(LAZO e 9 (ai,bi) = (r) , and ye'is

-Remarks:

The ray

function

onto (0;n ) _, as we

1,

1. Henceforth we denotete radian measure fUnction by 'y . Observe that
-` ` he definition of yli.,,"did,,not ,..depend on th-e.5aTriedekind. .potulate,;

1 7
-

so the concept of radian measure is defined in any synthetic geometry;
4,.but ;.n.e,es,40the...Captor-Efedei-ind, postulat in orderi."-tiiA--

1-Was onto

. :

.st
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It is easy to see that, for,any k > 0 , the unction krir is also

an angular measure functioh,. M epver, it can be shown that if Y is

any angular measure function, then there exists k > 0 such that
,

Y = - If the Cantor-Dedekind,completeness property is assumed,
g

then the proof of the latter fact is relatively straightforward (corres-

ponding to Exercise 2.5); but otherwise the proof uses the monotone

property of an measure functions.and also uses (in ess

(topological denseness, of the set of "bins rational numbers
- .

f°11

2
n

: m , n , positive integers, m ) in the interval [0,1 .

This*.isyery similar to the corresponding question for length functions

(see the remark which follows Exercise 2;2.19). We do no-rwibh to go

into detail' here.

It follows that, /n any geometry which satisfies the postulates

. of classical synthetic geometry, any two angular measure fulactions are

similar, and the,set of all angular measure functions is a ratio scale.

If the Cantor -Dedekind postulate is assumed, each angular measure

function Y = 'It is onto an open interval,. (0,kg) of real numbers.
.

_

For the degree measure function (which is used in the SMSG treatment

475,f metric geometry) 1k =
iso

'2. The proof that r is onto (0,g) , implies that, for anyfangle, a ,

and any real number r such that r( r (a)) < g , there exist angles

whose radian measures are r[ - (a)] . In Partieular, this is true for

r =
1

, where fq is a positive integer. Hence (with the assumption

of the Cantor -Dedokind postUlate) we can show the existence of

q -sectors for every angle and every positive integer q . Thus

% trisectors certainly exist in augmented clasgcal geometry, even

though thep,cannot be constructed by "classical" methods.

It is another by-product of the fact that y
g

is. onto (0,g) , that

_a circle of. radius- 'c' 7has.a

real (0,30 lend that any angUlber arc of length s has

"sub-arcs" of eng-tfil so , where 0 is any real number etween

N 0 and s

frr-ares of lengths re ,,for every

226
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4. We are accustomed to using all of the above properties. This means
that we.are, in effect, assuming (usually implicitly) a geometry which
satisfies the Cantor-Tedekind completeness. property. In the ,metric
treatment of geometry, and in the cartesian treatment with real,
coordinates, this property follows from the postulated prolArties
of the distance and the coordinate futictions.

Te-heiRelationship of Linear and Angular Measures. One-of the most impor-
tent facts about measure functions (both empirical and mathematictal) is that

'there are relationships between them. Cartesian products, and commutative dia-
....,

---grams are a natural vehicle for illustrating these relationships.

From what we have proved above, it follows that the radian measure
function, whose definition involved the use of a length function, Coincides
wifh'one of the angular measure functions which were defined (and whose
existence could be established) quite independently of length. Whenever

this sort of situation occurs, (equality, or relationship,, of two functions
, -

.which are defined., or afrived at, quite differently) you should suspect that
there might be an underlying commutative diaghtg, representing the fact that,
starting fron2. any ,domain element (in this case an angle.) you could reach the
same point (its angular measure) by different "paths". -We ilittstrate this
"commutativity", situation in the diagram below. D is a dome.
functions. We assume that D includes at least all segmenta and-814,u-
angular arcs. k is any length function, on ,1) ; (k

+,
)(...4.

is the natural function determined by 'X on the cartes ian,produet D D .
,:DXD -->"Et X R+) . A denotes,the set of all 'angles: The ction

f : A -> D X D may be, defined as follows: ,,Select any fixed plane and any ,
fixed circle 'C (with center Z) in that plane. If asAl select any.
angle ZXZY Congruent to a , where X , Y are points of C (see 'diagram
used in definition of radian measure). Then f is. defined *by ,f(a) (XY,XY),.

The mappingl. 115 : X R+ --> R+ is the division function, 2-c6(x,,y) = .- Then
Y

the fact that the radian measure function is Acual to one of the independently
defined. angular measure functions, is equivalent to the- statement that there-
is one of these functions, (yo say which (for every ch9ie of , C

and ZXZY);satisfies r0
q

= y where y is the composite function

r = 6(% X Of . That is, there is a yo which makes the following

diagram commutative:

r. 7

227
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D X D
X X X X R

8,

if

A D

Nir

11-1.>

4
It is useTtil to show what happens toa particular element of A , using

a "parallel" diagram:

X X X
(x(2) , %(E))

Yo(a) X(2) A.(TeT)
a

f

To

a

Because T
0

T , there is no need to distinguish between them because of

the way in which they were defined: they are the same 0
fUnction.

. Arc Lengths as Angle Measures. Perhaps you are accustomed to a definition

of the radian measure of an angle, as the length of an arc of a "unit'.

circle.- There is nothing wrong with such a procedure:' it leads to7'
rp

exactly the same function. We have used the alternate procedure (defining'

radian measure in terms of i'hequotient two related length measures)

because'it makes more apparent the 'important fact that) althOugh we uge

length measures in defining rallianineasute for angles, the radian measure

function is completely independent-of-any
particular length function.-zOf

course this is-still true if we use the arc length definitio in'ithA

ar,

case a change of length XUnction from Xi to X2, , chances a.-unfit

1
circle by the similarity "point transformation trk ;Thus, if 'an angle

a determines an arc xi = (gi(a)) -on a unit circle when xi. is,usedi'

Pe4F
and an arc x2 ='(g2(a)) on a unit circl* when x2

is usedithea.

;alLp xi , and we have (in essence) "comMutativity, as represented by

the diagram: Vim

226'432



At.

xl< X
2

(c3.

=1

That is (cf. the'earlier discussion of_point transformations and similarities)
1

%lgl(a) ic\lridgl(a) 'K2g2.(8') ."2T7c(a)
.

A second reason for omrophoice of treatmeat 16r radianmeas e, as

that it exhibited the,relaudhship of lknear and envier measures1tra may
1

which we can follow closely T,rhen
4;

exhibiting,the relationship of length-and

area, and the relationship of length and volume.

It is also possible to define the

area. As is veil known. (we discuss it

to )131#16.4gions: so this procedum
4*4

measure functions indirectly. ,

radian measure function in terms .0.,

later) area function's are related ;
4

relates length functionsand angdier
4
1 p
N.

I
4,..,;F. . %.

Angular Distance and Sngular Coordinates.

introduce the concepts of angular

It4s now a sim4le mat:ter -po

distance and angular ceordinaies:,and.

the related notion of Polar coordinates. Let,Z denote the. set of all',,,,'

"'.4-J -'rays (In space) with a common endpoint Z . '11' z z belonoto Z : '

lit :i
- a.,.. 1

,
2".! .

.',/

. ,

,..

and if I is'ari angular measure, function with. range (10:p) , we can dbfine

an angular-distance functiOn . ,

)

),

12.4

r. I i . - .

4--
A fit"

-/

*411.

"(x4t.:z
2

0 0 zi = z2 .

p 1."T \ z
1
' is opposite;

1 2

229'2 0 "

z) otherwise. (Remembe that

z
1
U z

2
is)an angle.
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"S.

If we now res attention to the subset

of those rays of whic lie

ate angular coorAnate system

"initial ray" or 'orTgin ray".

,planes, which we 4 grate arbitrari

in a given plane

r rays. Take any

n the line

as H
+

H+

,,
X't NN,.

NN.
H

H
Z consisting

H ,ethenj we can set up

ray Z1pihte plane as

ZX deterret/two half-

and H . (See diagram.)

44*

If' P e 11+ , we define theanguldr,coordinate, f (50', of the raY

(with respect to ay. ) to be the aniplar.distance (ZX,i1) . If

e H , we define the angular-coordinate f (ZQ) of. ZQ to be

-a (ZX,ZQ),. The ray ',ZXt. .opposite to is siven the ampler
vOW

'coordinate 'p'. Clearly -p would be equally satisfactory: we choose
,

one of the possibilities so' as to make'the resulting coordinaterfunction

fr. :4( -p,i)]
,

.

1-1 and onto.: ventuPhly, of course, t is convenient to .consider the
)

range of fY as the-set of equivalence classes of real numbers mod 2p ,
1 . , 1

and -p , p,, ,then bellg to the same
,

eauivalence class., 2
..;

,
We have drawn the diagram in the conventional way, but of coarse

... , , ?

Uctions like left and ilght,Jandub.andt down, have no objective.mathematical

meaning. -Any ray couldbe taken as ini'dial rayl, aqieither halfplane
,

7 -' .. I

la. '..11- ,

-g"-1

239
A

9 4) , l
,.....L

...LA '
i

_

' * -'4....,

-g, 4

T

'r-,
1

1

I
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(wi respect to the line containing the initial ray) can be designated as

the posk.ive halfplane.

An angUZ r distance function, and a corresponding angular coordinate

function force urrent rays,in a planes have a relationship somewhat -like

that for a di' tan function, 'and a corresponding coordinate function for

a line. r ang,--two- rays zl. , z2 c ZH , we have

ar(zl,z2)

o

fr(z2)I

2p - IfT(z1)

if IfT(z1) -'fr(z2)I < P

- fT 2(z.)1 '
it If (z

1
) - f

T
(z
2

>)1 p

You should draw appropriate diagrams and verify this for yourself.

Polar Coordinates. A polar coordinate system (for a plane) is a combination

of an angular coordinate-system with either a system of concentric circles,

or with a-coordinate system for a line.

In order to determine a polar coordinate, system for a plane,, we first

need to have an angular Coordinate system. This means that we have'an

initial ray, a designated positive halfplane, and an angular measure

function or an angular distance function. The initial ray ZX , is called
ti

the polar axis, and its endpoint, Z , is &lied the pole. We also need to

be given a length function, or a distance function. *",,.1=.

The simplest way of looking at a polar oordinate system, combines

the angular coordinate system with the family of concentric circles which

are centeredat'the pole. (Think of theway latitude circles and longitude

"ray? look at, the poles, and you will see the origin of the terms 'hoole",

and "polar coordinates".) A circle in this familylp fully determined by

its radius (i.e., the positive number Which measures the length of its

iadills under the given lengthlUnction). The Molar coordinates of a point

,(not the pole) are a pair of numbers (r,0) : The first number, r , is

he radius of the unique circle (with center Z )
'

on whichil P lies, and

the second number, e , is the angular coordinate (in the-given angular

coordinate system) of the unique ray on whic If
1 . 7.

range of the ,given angular measure functions and

mod 2p , -Uteri there is,a 171 cOrrespondehce

aid pairs (r,g) , r > 0vThe pole is

pi is lquivalente Classxsk',

P lies.

of po

given the
.c

(0,p) is the

s an equivalence class

is 1' (not the pole)

ordinates (0,g) where
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0
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1

There is a second laY, of boiling at a polar coordinate system. Thi/ ,r -- .

iicansistent with, but extends the earlier proclaure, in permittInt t
first, coordinate, r to take negative values. This second,,approact4tombines'ti;'giv'en angular coordinate system (as before) with a coordinate system form, 7.

*/aqne. ,Observe that if any ray AB is given, and if we have a fed dia-
tange!fugction a , then there is a unique coordinate systemf,f , f's:i tpee-71 --line -'; Tehi,ch iiec-OMpatible with a , and which has i'(A).'..- 0 , f(1.4,-'/O

ca this the coordinate system for ZS which is detektniried lz,,- A.:,t;,...d. ,.,

'' a . This idea-is, used in the second type of polar coordilat-e'system. -;Agairi
Zr:d

polar coOrdinatea goiia pOint P are a pair- of numbers 6,p1: The secoh
number is the an'

",EP=' . Thojfirst n
ar copilinate of either the ray , pr. th.,e opposite rag .4-

-

r is then the line coordi.4-e of P in the
systern,f rs> !:(1,etermined by ZP., or ZP`i , respectively.

r.:,-is the secoackllumber e , determines a unique ray, .and hence itr
..determines a'.1ine arid 'k4 v?ordinate system for that line; -tile first number

.. ' _,.. '
ordinate

,,:r o o ,
5 .,1 /1 y

' r , 'fp then4111cO of a point on that line. Thus the pair (r,9)
detertines a urci0e point.' In this type of polar coordinate systen1.4-rT-ria.Sr

1,be,,,an,V real number. Moreover, if (0,g) is the ..range of the given simple...'',:;;.,'''-angilari meaSure function, then the coordinates (r , 0) , ( -r , 0 + p)
determine, -the saineepoint, so that each point (except the pole) is represented
bttwO esientialik different coordinate pairs. It is easily verified that,..i
if;'-r >, 0',' and if fixed underlying distance and angular distance functions.
are_eiss.Aed, then the,pair (r,e) determines.,the same point in either:of...,,...1--,- , - --
the taatnels, ckf polar coordinate systems which we have described. ..° `".. '''';

1," ': ,:. i

. ,,r . -,-,. ,. ..i..-.3-4. Extension of the Domain for Angular Measure: Directed AngAs and -
I A

Rotations :

In this section we consider some extensions of the notions of angle and
,angular measure. The first of these (involving the notion of some sort of
"generalized angle", whose measure could be any positive real-number) was ,

implicit in the Mork Of the earlier sections; i.e.; in the extended joins for
wedges, and in the forma), sums of angles. In the (empirical) extended )oin.\\\
situation, -we could have defined a generalized angle- to be an equivalence \

class of extended joins. But the corresponding situation for formal sums 2

(in the purely mathematical context) is not very satisfactory) because we
;have,lost completely the idea of "joining the angles together, in a con-

tinuingtinuing order". We can approach this latter idea in two ways: 'either
,

1..t
01--1



,

by using directed' angles, or by using rotations. ,We shall, explain each of

these procedures.
. .

' Directed Angles. The notion of. directed angleci closqly related,to the

notion of directed segment, and to vector ideas. AT
4

irected angle

is defined to be an ordered pair of non-collinear ras:14461,a common And=1'

point. Clearly, each angle determines two simple dirOted angles, and each

simpiedireCted angle determines a ique angle. If w_restrict our atten-
.-

i
-

n to the set of all simple directed angles in,a f.ixed plane, then it-' 1.9:1

possible to define an equivalence relation of "same,orient:ation" on this 4

set, and there are exactly two e q4ivalence clasncs, ylliche can think of as

corresponding to "clockwise" and "counterclockwite", or "poitie" and

"negative ". As you might expect,41t is a little more complicated to

formally define such an equivalence relation for coplanar simple directed,

angles, than it was for collinear directed segments; but it canbe done by

filling in the details of the following scheme.

First of all, for two coplanar simple directed angle (al,a2) ,

o

(b
l'
b
2

,) we define a relation, f ,(read as "has the same orientation as")

by: (al,a2) T (b1,b2) if, (but not of course, only if),the pairs of

rays (a b
1
) and (a

2' 2
b') are parallel and similarly "directed".

(This can, easily be made pretise.)44iftenbe (since we will want I to be

transitive) we can reduce consideration to those coplanar simple directed

angles which have a common vertex: Let (al,a2) ,'(b1fb2) be such

sinple.directedAngles,. We need to find some de4Ce for conveying the idea

Wirigidly rotating" (b1,b2) ,until its "initial ray" 1:14-, coincides

with al , and then comparing the relative lopations of tfie new "terminal

ray" b3 and the terminal say a2 . We then, define (al,a2)

if a 2
And b' are on the same side of a

1 I
(By this we mean of

course, the same side of the unique line which al determines.) In order ;04:.=

1 -

7

, ,'
, 1,

to handle the "rigid rotation" idea, ,
using

$
using on6 cOngruence and tetweenness.c

1

(You
,

properties, the following scheme may be used :' o should'draw diagramnf
.v.

. .and,if possible, prove that the scheme realUrlworks.), .

;;' v
, A t ,

:,

(a) If- a
l

= b
i

,,,,,take b3 = b . -",.. ..-.

3 2 --f441:.

_

-
-,* .:1'' tle. ,

if

, ,,
1 N

.1

.4" t

)

4



.14

(b) If a
1

= bit
1

(we use primes to denote opposite rays), take

b = bl
3 2

(c) Otherwise take b
3

so that Z (a
1
U b.) = Z (b

2 3
U b3) , and

(i) if al = b2 take b3 on the bi side of ;

(ii) if al = b2 , take b3 on the side e of b2';

(iii) if blti.al - b2 , or bi - b2 al take b3 on the bi

, side of b
2 ti

?1,4,

.(iv) if bi - al = b2 or bi - al , take' b3 on the 1)1.

side of b2
" '

It can'be shown that the rOJOIOn 'T. so defined is an equivalence

relation, and that if' (al,a2) , (bi,b2) are two directed angles, --

--then either (al,a2)' T (bi,b2)."--7-or .(a2,a1) T (bi,b2) Ityfollows

that there are exactly two equivalency classes of simple directed angles
in a plane. Each class is called an orientation of the plane. Two
different simple directed angles which determine the same angle (e.g.,
(al,a2) and (a2,a1)) always belong in "opposite" classes. We

"orient" the.plane.by selecting one of these equivalence classes. Thus
' each simple directed angle 'cleterdinessan orientation of its plane. An

e-". orientatiion may be given in other ways. For example', by,three non-

collinear points, named in order; by an ordered pair ofdiffeient half-
.

planeS, whose bounding lines are not parallel; by a ray ands. designated

halfplane bounded by the' line which the ray aetermines;
(hence, by an

,angular coordinate system). You should drew sketches and see how saoh-,of - t, ,

. ,these situations. can be used, in a natural way, to cretermine,an orientation,
/' , 1You 'should also verifithat if 4 1, B , C are the vertices of a triangle,' / ,I, .

, / tthen'opposite orientations are determined by each OT the two "cyclic orders"
, 1 ://,J

. '

t:-

in which the vertices can be named; i.e., the simple directed angles
' '"

4 , 1 ,

111 1 '(g ,g) , ca , a) , and (g ,A1), ,eadh determine the same orientation.

The notion of directed angle, likdthat

essentially'a vector notion. The set of

plane can be classified by combining the re

directed segment, is,
---,i,

iDimple directed angles in a --''F

lations of congruence and_ 1. o ,.

orientation. If 5 is a simple. directed angle, denote the corresponding
-



(undirected) angle by S . We then define an equivalence relation, - , on

the set Of all simple directed angles in a plane, by:
40

1

51 . 52 if and only if t7; = 62.,and 51 T 62

We ,could now define a join operation for equivalence classes of simple

directed angles, using the same approach as foangles; but, as for angles,

we would find that the,set is not closed with respept to the join operation.

We therefore first seek to extend tife notion of directed angle so as to

create a larger system, which includes the simple directed angles and which

is closed under an appropriate jOin operation. .There are twoclosely related'

'ways of doing this. One is to extend the notion of, simple directed angle

by Aefining a directed angle to be an ordered n-tuple (n > 1) of similarly

oriented directed angles, with the property that the terminal ray of each

is the initial ray of the next. (Cf. the definition of broken ,segment.)

The atherprocedure, which is eapily shown to be equivalent to the first,

is to define a directed angle to

rays (a; , a2, , a
n

) which

property that-all of the ordered

.

oriented simple directed angles.

be an ordered n-tuple (n > 2) of'coplanar

havea common endp9int, and which have the

pairs (a.
,

a. ) determine similarly
+1

(This common'orientation is called the

orientation of the directed angle.) With this definition,, a simple directed

angle is a directed angle with h = 2 . 4

--Notice that what each of these.eqUivale#definitions does, is to over-

come the limitations of our elementary idea of angle by using, the notions 'onsof

simple directed angle and orientation to convey the intuitive idea of

-A rotation in the same

explicd.t introduction

in the work involved;

direction". We could have done this without the

of orientation but there would not be any saving

and, in any case, orientation is an important idea in

. its own right.

(

,,,,,....,011i7:''i'

We still have rot quite reached an "angle" notion which corresponds
4 ...

directly tqc.Ae-iAte-of a (sensed) rotation of a-ray: for thii notion the

important ideas seem tobe the "initial" ray, the "direction" of, rotati.on,

and the "amount" of rotation (which determines the "final" ray). 14 other
. .

s

words, as far as the idea of a sensed rotation is concerned, we should some-

to7-,

1

,.(:-

how classify our directed angles into:those which ;114146 the same initial' and
i-,a

... "" -
terminal rays, the same orientation, acid: the'Same' ahgulAX measure., In order ' : :1

. .; ,to....

to do this, we have to define angular measure functions for directed angles., '

, .-.
1

1

This is quite straightforward.,
I

`I- i

' s '. ,

. -
, ; , 2352 3 0
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v

We first define a generalized angle to be any directed angle,idwithout.
.

regard to its
.

'.

-/
1 ',

. ,

...
. \ <0'

(Remark. We cOuld'bave defined generalized angles without first definng

directed angles, but we would have had to find some way of making precise the

same idea of "fitting simple angles' together in the sane direction". In the

long run it is more economical to define the notion of directed anglefirst.)

We consider next the relationship of our generalized angles to the=finite

"formal sums" of angles which We used in setting up angular measure functions

for angles. Clearly every generalized angle determines a "formal--sumt4Lthe
liformal sum" of its "component" angles.' Moreover, as you may show, in every

eqUivalence class of "formal stuns" there are many "formal sums" which are

determined in this way by generalized andes. Therefore we can use the

equivalence relation for "formal sums" to obtain an equivalence relation for

generalized angles, and our resulting set ofequivalence class of general-
ized angles will be in 1-1 correspondence with,the set'of equivalence

'classes of "formal sums". It is natural to use,this situation to give an

"additive" structuge to the Set of equivalence classes of generalized angles,

and to.ottain angular measure functions for generalized angles. AI

words, if A = (al , , an) .is any generalizedanglejeach

a ray)', and y is a measurefunction for "formal sums" and he of course,

for simple angles),we thus obtain

other

n-1

=T(A) T
1=1

0

With the archimedean and C or-Dedektnd postulateslassumed, the range of

on generalized angles will be the same as the range on Vfo 1 sums";

i.e.,

.
\ .6

, It is not too difficult (using mathematical induction), to sho`that if
vlangltwo directed es are co planar, have tnisaie initial ray,,x e eno

--

tion, and the, same angulat measure (when considered as general zed°angles),
0 i

A `then they have the same terminal ray. Thpoequ*alence relationOr generalized
Vt.- . 1

.. '5/ I ,.

2.1110, angles, taken together with orientation, gives an equivalence-Fela ion for

coplanar-directed angles,,and it is astraightforxard matter 4 deli an
/

.o_
..

rassociative, comfttative join operation for these equivalence la.-sseS.

1,4

f.1

4

.23^6
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At this point we are very close to the idea of rotation., We can define

.

a geometric plane rotation to be an equivalence class, of coplanar, similarly

oriented, directed angles, with a common vertex, and with the same angular

measure. If we add the adaitional_restriction that all of the directed angles

should have a common initial ray, then the resulting equiiialifiCeClii4ses are

called geomet.c la,/ relations. Clearly) both geometric plane rotations and.
e

geometric ray rotations may be oriented. It is not difficult to show that,

for'a fixed plane and vertex, each geometric ray rotation is a subset of a

geometric plane rotation, and that the correspondence of plane rotations,

and ray rotations with a fixed initia\ ray, whiCh is thus established, is

1-1 and preserves orientation.

From this point it is only a short step to the establishmentiora

vector space structure on the set( A of geometric plane rotations (and,

"consequently an isomorphic structure on the set Ar of geometric ray

rotations with a fixed initial ray). Addition is defined in, the natural..

way: if two elements of A are similarly oriented, we add them by using

' the join operation for equivalence classes of directed angles. If,not

similarly oriented, then we have to introduce a "subtraction" procedure;

this does not present any real difficulty. Scalar multiplication by real

numbers is introduced in the usual key (in particular, negative multiplication

reverses orientation) and we obtain a 1-dimensidhal vector space over th

reels. An isomorphism. of this space to the b

selecting one of the orientations al. "positive", arid'one.as "negativ and

using any angular measure function y to define a AraCtorineasure ction

(which-is as follows. Let' rz
4- ,gLS, d

/

-let 8 e S define

y(8). if Z: has positive orientation,

x
-r(S) if g2.has negative.pyientation.

An isomorphic vectorspace
r is-pbtainea.it we restrict ourselves to

the equivalence classes of Coplanar diiiected angles. at a point and with a

specified initially.. In this case, we can us
-:

froM
r

to lk (es4blished from a particul

to extend the angular CoOrdinate4atem earl er

tended system, the angular coordinate of a as

'real numbers which correspond to a directed angle which has the "origin ray";
,

any linear, isomorphism

angular measure function)

establisivd. .In this ex-

p , may be any one of the

237 24
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as initial ray,'Ind the ray p as terminal ray. It can be shown that these'

numbers are congruent, mod 2p , where (0,p) is the range of the under-

lying simple angular measure function.

ROtaon. In the above discussion of directed angles we reached the point

where wevere able to give a geometrical definition of a simple rotation of

a ray or of a plane. In view of the intuitive simplicity of the notion of

"rotation", you "Probabl7found the formal introduction surprAsingly awkward.

You might find it useful to try to recall how yop nOrmally handle questions

of rotation, and to try to devise a simpler way of introducing the notion _

the formal,* structure of geometry. We now look at an analytical approach

to this question, making use of the notion of continuous function. The.

treatment has mucliin common with that of curve length.

The first kind of rotation which we look at is that which, intuitively,'

corresponds to a simple'motion of a "ratr" in a plane, with its endpoint held'09
fixed_as a "center of rotation". (I.e., somethtalike a singl sweep of a

simple pendulum.) We formalize this idea as follows: Let r
H

be the set
!-- " % ---

,

of all rays in
'

ixed plane H , and , with a common endpoint 'Z , and, let
.,,

ow
(a;b1 be a al of real numbers. (You may think of Ca,b) as a

time inte ) Th a simple ay. rotation, with center Z , is 13. 1-1

continuous function from [a,b] to r .*(The notion of continuity may be
0 4 .

defined by using any angular distance function for..ays, and :bhe usual 4

o'
:

distance structure of' R : We .4:3 not want TO go
,

.0., detail here.) Thei...
.

combination of continuity with the 1-1 ,propect ,'ensUgs thitt the rotation;
N,

4 :((° cr
is "simple" in that it,reflects the. intuitivd idea Of "continuouslyturntAg

ti
. ,

. in the same direction". The 1-1 condition alsrensures ,oltcoUrse'Ahat
?(' vo.'-

cs,

such a.simple ray rotation is less than a "fUll r
,

IvolutiOn". ',.. MI°. ''

.a

Given any measure function y for angles, 'we can easily defin ale . 1

1;corresponding measure function for simple ray rotations; blat,we do n t Atof. a ,

to do this, because It will be just as easy to define angul.hr measure for

the more general type of ray rotation which we consider next, and which in74
. . C.,.

cludes simple ray rotations. We do however remark. ere that, if the image

set (of rays) Of a Simple"riay: rotation f : [s,15] -,rH lies in a hdEt-

plane, then, corresponding' to each measure function -Y for angles, there

will be an angular measure function (r , say) for rotations, such that

7(f) = y(f(a) u'r(b))

238
51 tf ,,
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You should observe that if we had originEilly defined an angle to be a

"segment of rays", then for a simple ray rotation whose image lies in a half-

'plane, the image would be an angle, and the angular measures of the rotation

and its image angle would be the same.

As a next stela;,

so as to- obtainmore

geometric rotations.

extend
NS

we might consider how to extend our simple ray rotations

general rotations which correspond to the earlier-defined

TO do this we will have to find some way of conveying

the "monotone" idea' of "continuously turning in the same direction ". But

before we do this, let' us first look at a more general notion of ray rotation,

and define suitable angular measure functions. irese angular measure functions

will then apply automatically to the more 'restricted ray rotations.

Let Z be any point of space, let F. be the set of all rays with end-,

point' Z , and let [a,b] be an interval of real numbers. We define a

[rotation (at Z ) to be a cont uous function

-f : .

You should Observe the parallelism between this definition and that for a

space curve: it, has just the same degree of generality. For the same

reasons as for curves, it would not be feasible (in general) to define the

rotation to be the range of the function, although in this case,you probably

don't have quite as strong an urge to do this as you might have had in the

case of curves. As for curves, we may 'identify the function with its graph

in R X I', and (with a suitably - defined notion of continuity) thfs graph

will be the 1-1 continuous image of the naturally related function E ,

defined on [a,b] by

F x -)(x ,f(x)) .,A t

The definition of the angular measure of 4 rotation f tis defined

exactly as for the length of a, curve:- it simply makes precise the intuitive

idea of "total angular distance traveled".

If Y is an angular measure function with range (0,0. and if C1/4

is the related angUler distance function for'rays, then a corresponding ,

( angular Measure fUnction Y fol. (some) ray rotations is defined as follows:

400
I Assume a < b , and let

a = xo < xi < x2 < <xn =b
.;

be any finite, ordered set of points on Ca,b) . Then we define

239 243



II 1

S,

7(f).= sup (Z/x
(f(xi -1)

, f(xi))

. f

provided that the least upper bound exists. Here weunderstan that the

....)Cleast upper boUnd is taken over all,finite ':partitions" of th interval,

Ca,b1 ,"gnd that ay(pi ,p2) =SpOif4the ray' p2 is opposite-to the ray

a
pl

With.thiA definition it can be proved that:

(i) If Y
1

,b are angular measures with r
2

='kr1 , then

.

.7 2
k11

1.

(ii) If f is simple co -halfplanar ray rotation, (i.e., the

image rays are co -halfplanar) then 1(f) 411(f(8) U f(b))

(iii) If f As a plane ray 2otation (i.e., all image rays are co-
*

planar) which is "piecewise simple" and "directed", in the sensg

that there exists a "partition" a.= 'y0 <_y1 < y2 < < ym = b

of ra,b7 , such that .

(a)- f is a simple cmisalfplanar ray rotation on each

;

,(b) each directed angle (f(yi) f(y1.4.1)) has the same

orientation;

.1 ,

%

,
then 5 = (f(y0) , f(Yi)', ..... , f(Ym) is a directed

. .

angle, and r() = r() , where f denotes the corres-
4..

generalited angle.,_____________..__ ___ _____ ....

That is, if a ray rotation corresponds to a generalized, angle in this way,
i

then its angular measure is the same v that of the corresponding generalized.

angle. This suggests that we might dlop the bar over the Y ,and regard 7

"extension".simplx as an 4extension" of r . With certain reasonable assumptions, it
\

.

, can 'be shown that each r has a unique "extension".
l

\
.

Remark: A ray rotation can be determined in many ways. In order to deter-

\

..,
. .

to the endpoint Z . It canmine a ray, we need only one point'in additio
,

' ,

be shown that a rotation is thus determiped by any continuous function
,

defined on an int rval [a,b] ,and with values in S - Z . (I.e., by

any curve whose range does not include he fixed endpoint Z .) In particular,
_ .

if the range of such a curve i4 on a sp re,with center Z (or a circle in

0

2124 i



.

the case of a plane ray rotation) then the .length of the curve may be used

as an Angular measure of the rotation. If "ghe Sphere has radius "1" , then

this measure will be the same as the radian measure of the rotation.

110

t
We do not wish to discuss the problem of actually calculating angular

measures for particular rotations. As in the case of curve length, the

method of calculation depends largely on how the "rotation function is speci-

fied._ In the case of a simple repetitive situationcsTERas_a rotating fly-

wheel or a pendulum, the angular measure of a rotation can usually be cal-

culated (byAlemientary means) directly from the definition; but in the case

of more complex rotations, calculus methods are often used.

Plane ERE Rotations. Those ray rotations whose images lie in a fixed,

plane, ,are of special interest. We call these plane ay rotations. As

mentioned above, some of these correspond'to directed angles, and these

rotations Have
.__

Ihe same angular measures as. the angles to which they corres-.

pond. It seems reasonable to call such rotations "sensed", or "monotone",
.. ....

and we could, if necessary, distinguish between those which are "strictly

monotone". (i.e., "locally" 1-1) and those which are not. You might find it

interesting to try to formal*ee this monotone idea in different ways, remem-*

bering that it shoUld be a 11,19as47-property only, because we want to express/
,the idea of "keeping rotating in the same direction", and, at the same time,

allow a "return to the same place".

One way of achieving this objective is to define a plane ray rotation

f to be monotone if, for all, similarly directed sub-intervals of (a , b]

on which f is a simple rotation, the directed "image angles" have the-

same orientation. A monotone, rotation is strictly monotone if it is also

locally 1-1 . (I.e., each point x of the domain..ita,b1--ISTtontained

in some open (or semi-open if x = a or b) interval, on whiCh f is 1-1.J

It A'not too difficult to show that the`strictly monotone plane'ray rotations

_ are those' which correspond to directed'angles, as described above. (More

precisely, a strictly monotone plane_rw rotation corresponds to a geometric

rayrotation.)

Monotone ray rotationecan be oriented in the abvious way, and they

Separate,into two classes, which we might designate as, "clockwise" and

-"Couiit;i--clockwise".

. Rotations of the

Subject of measurement

.

amt. Although it is only marginally connected with thee

, it seems advisable to tie together the'notion of

4
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...

rotation that we have discussed, and the familiar notion Of a "rqtation of

the plane". A rotation of the plane is a congruence (or rigid motion) of the
a

plane which preserves orientation, and which is either the identity function
;

or leaves exactly one point (the "center of rotation") fixed. In other words,

a rotation of the plane isapoint transformationr:H -> Hofaplane
4

H , which takes angles into congruent and similarly oriented angles, and which

leaves either the whole plane, or a single'point (Z say) fixed. t fl
Z

17denote the group (with respect to composition) of those rOtationsy is leave

Z fixed. Each transfoi'mation r E 11, takes a ray with endpoint Z into a
, -

ray with_endpoint Z , and hence r determinegNa l -1 'transformation (p say)

of rH the set of all rays in H at Z . The set ¢f those transformations,.

p , which are obtained in this way, is a group, Hz ; this group 4s, of course,

AR
isomorphic to n

Z
If

tf Ca,b] -3)r
H

is a ray rotation, we,can compose

O

and p to get another ray rotation:

.pf : [a,b] rH

i;

All such ray rotations pf (for fixed f 1 and p derived from any rotation
k

r e II
Z

) have the same angular measure, Moreover if f' is monotone (and
. .

..x- .

hence has an orientation) all related transformations .,pf,_ are mdhotone,and

have the same Orientation.

ye,define ray rotations in a plane H to be "ecluivaient", if they'

have the same center and if they,differ by composition with an"-element p

of II
Z

This relation is easily shoign'to be an equivalence relation,v_The.:

resulting ,equivalence classe3.are called plane rotations. (Notice tit
.

t
these are not the saialii-W-nrotations of the plane":-lthe two ideas -are-----:

close yprelated, but we have used different forms of expression in order
I%

to di tinguish them.) Thus we can use the familiar rotations of the plane ,t
.=,

(point transformations) to make precise the intjUitive idea-that a rigid
1_ _

.rotation (as a continuous motion) of theplarie completely determined byt 4 \

the motion of any ray in the plane which has,, its endpoint at the center of

rotation. The angular measure of such-a plane rotation is simply the (common)

angular measure of the ray rotations which it contains. It is not too

difficUlt to see that the correspondence of strictly, monotone ray rotations
. .

with geometric' ray. rotations, induces a similar correspondence of strictly

monotone tfilane rotations and geometric

... ,
. \

\ .).

plane rotations.



// V

Every plane rot4ion determines a unique rotation of the plane;,(in-.
,

Xuitively, that rotation of the plane which takes the initial position o;41'

each ray into the final position) but the converse is by no means true:

infinitely many plane rotations lead to the samepoint ti.ansl'ormatiOn on the

plane. We can"assign4a "measure" to a rotation'of the plane by specifying,

c' an orientation,,' and by using the greatest lower bound of the measures of

all of the monotone plane rotations which have the specified orientation, and

which determine the even retatioRpf the plane; (intuitively, this is the

-measure b?-the-Shte'St "angular path" itthe specified "angular direction").

Thus we typically speak oi:rota,ions of 75° clockwise, 210° counter-
,-

clockwise, and so on. WHep we do so we do not generally distinguish in our

`minds whether we are thinking of a rotation of the plane as a point trans-,

formation, or of the more complicated idea of a plane\etation, whig<IP4

concerned not 611Y with where we are going", but also with "how we get,

there". If degree measure is used, this measure furibtion establishes an

isomorphism of the group (under composition) II with the additive group

of real numbers modulo 360. If radian measure is used, the isomorphism is
et

9

With the additive grbup of reels, modulo 21(

Finally, we remind you of the "dual" relationship between point trans-

fbrmations and coordinate transformations. Under this relationship a

rotation of the plane corresponds to a.rotationcoordinates. This

correspondence may be used to "measure, or specify, a rotation of coordinates.,

.

,<

3-5., The Elementary, Theory of Area

, Area is a concept for which we have'arstrong intuitive feeling. There

is an empirical aspect of area measurement, and thereis a mathematiqal _

aspect. Our discussion wilibalmost entirely confined,,to,the,UttM:, but
k' 7--

this does not imply that we are ignoring the empirical question: the mathe-
,

matical theory enters into, virtuaily_every empirical area measurement.

It'is convenient to break .domn the mathematical treatment into two

paits. The first of thesa the so- called elementary theorY) deels with the

areas of,polygonal r Ions. This part of area theory may be thoughtof as

corresponding ro ghly to,the theory of length for broken segments,,and you

',can detect similarities-in the treatment. ,However, area z a"little.
1

'more co fpiicated than length, (bothiMpiriaally and mathematically it is.
4

1

har r to comPare regions with
I
respe9t to their "areas", than s to compare



...--

1 7,
...- . ,,, \,, 1 i,.. ,'"" .f.,+ ''..,-;'-'",.',11 1_,,,,,,.,.

. .

,..1.. f. .. , _,...,

theiC
:

engths") and we, should not

.shOlgs in the development.
'...-,;t -11

segments with respect

as w see, use %De theory, of lengt

dy developed, in ord4r to s ,ylif ome

A
The secona part of tred-tment will be

the domain for area functions...4.
-N.

1be surprised that

the ethe. r hand,

ch we have 9.-

extensions pf
-I

pa of the -k.re

wi

Area From an Empirical Stand Q1

first need to recognize a domain of'o ectswhi

attribute wh' we think of as 'aeA". Atfirs
IN

. As- wit

earned

,

length nd--angularity, we

possess%

we are like

he, (undefined)

to ratri,ct our

rical me ni4iag
i "".

evise Some '1

S `

t

attention to "plane" objects (where "planet has t be given em

in terms of some empirical test). For this doMain of objects'we
,

empirical procedures for "comparing" objects with respect to their

Our procedures will almost certainly involve the assumption that objeCts with

"size and shapeAm(a notion which correspondAtO the mathematical :the same

notion of cthgruence,.buthich has to be established empirica4.1y) have

n itequal "areas , an4the.t two obj&t-alsO have equal areas" if the....A.y can be .-

,...

rs,"decomposed" into pieces in ilch:tl way that there is a 1-1 correspondence
..

.,,.

'of the pieces, with corresponding pieces having the lame size and
, , ,..

shape. By this means we might hope to separdte the oWect's=0 the domain -. -. ,

into "equal area equivalence c asses, and to Corder" these classes. '.Dif-

btfictaties arise because of pro ems of "fit(ingf(i.e., -6Aing for "same.:'-

--T...",.-- Seie'and Shape" r: Undoubtedly,swith a'SUfficlentirestriA4 domain, and `-'
....

.

=

with enough'patience in "cutting and fitting", (prdbably usinglimplid'itly, ,

'..., .

a
an assumed transitivity, so as note to destroy all'objects in the Croce s!)

,...

r.

we could estabkish an approXimate order structure on the domain and on the,

-°- It '
equaloarea equivalence classes.

2.

.An operation of "adding" Or joining classes of objects is more.strai.ght-.

fOrWard --Tne may simply use the Procedure of ltdisjoinu---ri10---and with a

lot of work, and some imagination, we dam envisage that the set',,,of equivalence
.

classes might have the structure of an ordered (even densely ordered) abeliap,
,

.....

semigroUp. We would then look for structure-preserflng functions whichoare*

0 ft

defined on this domain / and which have positive real values, andwe might:,

seek tostudy the reliationship between such functions (if any),

, , 6,.,
...0 As,for other measure situations, existence would be estaI:Whe y,

t

,selecting any particular class as "unit") and by deevping an'apprOprtate

procedure for."comparing".eachObject with this felt. We could, for exakle,
- .

take the class containing a particular (empirical) "sqUare" region as unitA
,



CI

.% 4

and deviseqa
procedure for comparing this with any other region by "fitting"

A
a

s laanyncontruent" copies as we could, then taking ark. riropriate "sub-unit",
(

fitting cp.rigruent copies of these to the "remainde", a d soon. If we wish
,

our irgiatrunits" to be "squares" also, we would find that each :'unit squere",

'\

could be most easily partitioned into - n
2

Congruent "squares", so that we

might
. -

.
.

as well work with a "perfect square"
(ri2

,
i

asen > 2) as b to find
. .

n2)(empirically)°an appropriate 'real number value (to base n
2)

ii-.> tyke area

of
A
the region under consideration. We would also finds of course, that our

--

"residues" at each fitting stage would not necessarily, have less thap litait
. '

.

area (cf: the situation for Length), so there would be problems in establish:

ing, with certainty, any pogrtion in the ellinsion tdbase n2 . (SW . .

. c -

. .

diagram belowiwherewe have taken n . 3 reand where wehave shown one

stage Vly of a decomposition/fitting process.) It:Th_giear that the.fitting
4.

\,couldgenerally be done J.11 infinitely many waysl,'a£41. we would hope to have.
. iempirical justification for thaasgumption that'cwith respect to a fixed'

.41uni't urea") the value found for thenarea" of, a given regioridid not depend
_ .

., ,..

...,

''on. how we went about.the decomposition/fitting process. [Incidentally,'if

you check the statement below the diagram, yo4 will be reminded of the
I'
importance ofnumerosity measurement (in this case, counting) in the esta= 4,,..`4'

,,e

: ,lishment of more complicated meitsure functions.) 0 , , A
. e

. ,

id ..
- /. / :

..,. ,r . .,- -;- 4 :
.. ,

, : ' .

_

V.-

:.i"

I
a4.+"?

I

0

tr ro

"
.
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et

,11

If one o eat in 'th'e domain i a .pubset of another, clearly the\tf:rea of

the subset/Should be less than orjequalto that of the whole set. B. usirit
, ;

74t-such a monotonicity'property we could',Iihd.upper bounds for the
,41:

value of ah:

\*
: area function :)3r considering those."disjoint" unions of unit regions and

sub - units, whic "cov r" the region'under investigation. (See unshaded

square regions in fi e, with partially dotted boundaries,.) For successive

'staffs ofour.prNess, the 'inner approximation" yields (in general) an

inCrking nuMber, while the "outer approximation" yields a diminishing upper

,bouna:':-TtOgetter, these }figures ive some indication of, the accuracy

shodld .4We/to stop alter sore finite
,-,

of our-thcomplete measureme
i

.. ,-/..

number of s epff. 'fl.... ,
,.

If all of -this,,ilere .8:41e117'ihraigh, carefully, we would find that the
.140-

.

area function so established'4ppearedito preserve the ordered semigroup

different unitswere timila,that length measurement and areawleasurement,

structure'of.the doma., different area functions from'\;

/ were related in the well-71op,o0.1.ay, smd ;43 on. But long before we had do4e

A'. :
"all,this experimental wo4E; lie Ould prdb:ably have decided that we would .i

,..
, .. '; ,;- .. , ,

. switch to a mathematical.limodel", and devisee. mathematical theoryIOf- iii"ed

. in the context of the model:. When thid is,:done the Idathematical theory be-
,.

, .
I. ..- 7... ;. -k, } ,,,.._

comes a.CompOnent in the process of empiriCal'teasurement, but it does not

replace the need.for.making some physical measureille (such ad length ,

-.
teasUrements anangle.measuremenin,orde'r to.fin'athe areareas of physical

. . ', AI \
'regions. Morebver, as mentioned earlier, the assumptidp of a suitable model

6

V 44' ' li Z.,

situation (e.g., using euclidean geometry) is actual0 a hypothesis concerning
:,..,,_ .\ t, .,,I;

the connection between emvirical objects, sappy -zo.12.,d, relations, and:tUnctions, II"

an their "model" countelta;ts. Such a hypOVIehdY44'Nequently'be eXore'S'sed
.

..

_ s , .1,....!' ..,...,7.,,..

-ln terms of the equality of certain functions! 5r"..i4OuefUnCtions are.4P*
.

.

....,,.%
f

:4 v_seated on diagrams, then thelhzpothesid_tha ceiNeliftcOmNWtefunctions-are
) . ',,

equal, is equivalent to the hypothesis that the diagrams* ark (at least' rq. part)
. .

4
4"

commiltative.

comMutatiyity

but our obeck
t ,

established with certainty, for those domain elements which we actually

test. n the case of area, .there,, is enough cumulative evidence to indicate
. . . .

.

that the mathematical theory which we will discuss provideRa most useful

elagdel fOr the empirical situation, and th we are justified in using it as
,4,1'.;.F

We may gain confidence kithe usefulfiess a the model by testing

for many domain elements and for various parts of the diagram,

involves physical measurement, so that agreement can never be

_Agmponent in the empiricameasureme
w'r".

"/-

area.

e.

O

)



ons for Reg nguliar Regions. The so-celled "elementary" theory

h'the existence and properties of area measure functions for

that theory, we can distinguish an even-simpler

the existence and properties of area functions for

6Ur rsap:ons fpr dealing first with rectangular regions
%

is the-- in 14hich, most of us first encounter some,,, w .! 'J
net'ef a MaffirMatical*eatment of area; and there are significant-..".~

--- omiSsions ikmost such gemengary treatments._
, ,,

I- . , .

-

''---"7-,',..:1.!o. , \-' , L.

te ....,r - ,

4- ; N., . .I \ *; , First Of als we-r{ to make clear$the context in which we shall dis-
. ,

, \ cuss area' 'onyx:' our 7c eatifien i'8;1.0imited to a discussion of area theory in,\ ,,
.

.
0 I .

i
,'..,...-... euclidean ge try.-v: We assume t e archmedean and Cantor-Dedekind postulates
.',.-.

A

-----4"----,---imltvu
, , ghout, i doe$ -riot matterwhe I we think of euclidean geometry as0- t

.4.;,,____augmcted synthelie geometry;:imetrici,geometry, or real cartesian geometry..
o_--- .r .

:\.. ' -

We shall make considembie Up of qur previous wo4 concerning the existence
o

...

I ';'"1-:. ;o1
(in euclidean geometry) and prodiRtiqs of length functi&is and caordiiiate,

,,

..._

,%
.functions.-

-- .
...,

.

We comment that it is possible to 14evelop an areappory-ptrely chin
the framework of 0Assical

Dedekind postulate)/but b

differences (parttlarly

theory,' and that 14-1 we,

length in ther atme

civil with it furth

than euclidAn geome

a treatment of area .for

synthetit geometry withakt
N

the
-4

-now you should bg. le to to What the ma

oncerning range pes

evelopebelowl'havin
1.4

linear,a angular meNips,
ict

at there

riipp.se

see ,a/ha

ory of itiea isThe domain for the elem
/.

-regions. A polygonal region is a pla figure (i.e., set of point

44

a,point at

e
ea eorie oth

1

dal nth t m here.

ex.' 24 lafsq-14].

,

et of all

'-.. -N
can be - expressed as the union ofo. finite nub) r of triangular regions,,no

%h
i

.two of9hich have miT point ( at is/ the intei-sectiobtof.
< ,7 i

'each two aft the tiangulariregions is)either.empty, or consistetpRin s
\

of the,tyitilgles 41,triangle is, of\course, Union,s5f,t ee S 5raent,
a. a 1

, '-''''in the usual way, the interior of a triangle is the interaet1 o the..13:
/

.: r e , . '''''.t) l' '' - teAorb of the three angles which the triangle determiners, and d,tri
A \

region is the union of:a tri;n4it.,:ab..a.its interi r. A follows-Chg
, --.e.

and triangular regions are plaile, figlirdp.. sacp o, ,tfe foupdllgre* b
t A%

,,, ..:

cloned
..

ingillustrates a polygong,"1:egit214,2g1111eLl5i041,11e4ndicati oneoliEr.:-....1 c
i

1 Al% - e
tipressing the region'ata,I.Inion of sUitablt tria9gular regions, as requi

- / .,,,,,, ..,,....
by "the definition. We point Out two things: , ill'. , ' 7

,..

248



(i) the expression is never unique: every polygonal region may be
expressed as a finite unioyr'of suitable triangular regions in
infinitely many ways; each such expression is cairn a trianguis:tion
of the polygonal region;

(ii) there is no '.:connectedness" condition (we haven't even defined the
term), so that any finite union of disjoint coplanar polygonal
e ions is-agEkin a polygonal wished we pould de-.

4,o/ fi e the topological notion i orconneaednes' and restrict attenr..

)¢

5

ws -..,0,i
t on to connected regions, but` -11qt,!-,tie sssiry; in fact,- if

,

w .7,. Q
"k ......., we did ,so restri we zol efining "formal-

` sms", or "disjo nt unialis",4p,pa -evelopient of area,. ..-
theory, so as t get

"4-
dopla.i ed =der a suitable

4 t,

1 join" operati . .--

v. , -,, ..,

..vf Sy

/41

'4;1)

Al

74.

4

--)t>"'
.310. F

P ,

" / 2



A rectangle i- defined as usual as the_unioo of four 'coplanar gegments ,

AB , BC , CD , DA , such that the angles. at A ,.B ,"C , le, are all right

angles. The interior of the rectangle is the intersection of the interiors
3

of itS'angles. A rectangular region is the union of a rectangle w
4 _____--

"interior. The,rectdngle itself is called the ..axml'is of the rectsngular
t

1 :.region. It is a simple matter to , that a rectangular region As a poly--
' tgonal region; (if you to the definitions, you will see thats.

4
thpre I Ns....

actually is .fl e hing to prove). Thus the set Pr ,4F all rectangular

gions is a subset of'the sett. P of all polygonal regions.

We shall be interested first in area functions for rectangular regions.

Action

f : 11+

is called an area function for the set P
r of rectangular regions, if it

satisfies the following conditions: i

AR=1. (Congruence Condition), If r1 a , are two congruent rectangular

regions, (i:e., there is a rigid motion of space which maps one
W

onto the ether) then T(ri) = f(r2) .

1

AR-2 (Finite Additivity Condition). Ifli; (r, 2 , rn) \is a

.firiit'e set of rectangular,regions.such tha

(a) I) r is a rectangular,region;
i=1*

(b) :the intersectandf any two diffe rent egions r
1

is either eMpty,er consitts of boundary oints

_(of r
i

and r )41inlv
\

An
1,

then f( U ri) = E f(ri) .
1=1 1=1

Remark: We shall be interested'in'area fancti s for rectangular regions,

, for polygonal regions, for triangular regions, ar i so on., Where there can

be no confusion, we often'refer to the area of a tr angle, a rectangle, or

a square, when we mean the area of the correspondi.n region. We do hot do-

-this for polygonalregionsgenerally, because it is Ikt necessarily true:

the boundary ;( defined as yet) of a polygonal regTon is a polygon,

unless we extend the usual definition of "polygon:). rreover, for arbitrary

/
40/

, .



1;

.;

polygons the notion.of "interior" is More complicated! than it is for simple

convex polygons such as triangles and-rectanglei.

You will. probably agree Ihat the above requirements (AR-1 and AR-2)

for an area function for rectangular regions, could hardly be reduced further.

The important question which we must answer is whether or not there.are-any

functions whiCh satisfy the6e conditions. The existence of such functions
.

and some of their most important properties, are proved in Theorems 3-5.1,
t

to 3:5.3 below. .

.. ..

f ,
.

Theorem 3-5.1. Leto be any squard region, and let the segment ao be-
.

. J

one vie its sides. Let 7.0 denote the length func-t,ion,(for segments)

based on o as unit. (I.e., N.0(00) = 1 ) Let r be any rectangu-
----- .

0

lar region, with sides al , a2 , and let N.(ol) = a , N.0(a2) = b .

'

Then, if f is'any area function for Pr , f satisfies
,

f(r) = ab f(ro).
;\.

Corollaryl. is an area function for P
r

, then so is cf for every

k c R +. . Hen with the same notation and assumptions as Above, there is,a

cOnique area f ction f."'for which f (r ) = 1'. i

\-- - 0 0 0
)

Corollary.2. Eaqharea function for rectangles maps P
r

onto R
+

, and it

also maps the subset of all square regions onto R
+

.

!

CbrollarlY The function

determine

0 0
.

''.

as in the theorem and Cckollary 1, is a 1-1 correspondence of the

set of length functiOns for segments; and the Set of area functions for,

rectangles., "N

;

r

' 7 -

,
Corollary 4. If f1 ,'f2 , are two area functiOns for Pr , thn there

-..

exists 'k-e-R, , such that f
2

= kf
1

.%1I.e.,,every two area functions are 1similar, and the set of all area functions for?: E. is a ratio scale.)
..

.

.

.
p'' ' V

.

":

, .

L

4.



A .

Remarks:

4110-

1. Notice carefully the-tithe existence of area functions on
., r

P is not

0'asserted. We Simply assert that, if there are any area functions, then.

they behave as stated, in the theorem.' The existence of area functions .

will be proved in Theorem 3-5.3. You will find that most elementary

treatm s area theory for rectangles either postulate the existence
of a ea functions, or they overlook the need to verify that'the unctions
found from Corollary 1 above actually satisfy the require1ments of the ;
definition of an area function.

2: It is important to note that the particular length function xo is not.,

essential to the statement and. proof. of the theorem. The numbers a
and b ,which appear are actuall,y, the ratios of the lengthSNof al, and

c2 to ao ;end,' as we saw in the discussion qf length, these ratios

can be defined without the use of any particulgx length functioh,.and

they are unit-free. (I.e X.(71)/k(a0) = a for every x.)

. Proof of Theorem. In this,pfrogf, all lengths are with respect to the
i

function %
0

Let ,r be atreictangle whose sides have lengths x , y,'

,

1
.

and let r2 be a rectAngle whose Sides have lengths mx., ny , where in ,.a. ,
_r

''''', ,N,
n , are positive.integerb. 'Then it is possible to express 'r2 as the uhion

7 of mn rectangles, each congruent to r1 , whose only pairwise intersections

are boundary points. (See diagram: we shall not verify the above intuitively.

obvi us as ertion3 but if you wish to fill in the details of this, and '

corr sponding later statements concerning
"deompositions",-you will find it

4

simplest to work in tekum of cartesian coordinates. If you fill in the
details you will' find that we make considerableusiplof the additive property,

of ielierNrictiOnsronariertitioned", segmeRts.) '
-+ 1 , ,1-)

o

' ,

4"

252.
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\ . 1 .,
. -

' . .1

..,... nr. ..
o

4'
., 'K.,

( 4.

It follows from AR-1 and AR-2 , that

( * ) _ f(r2) = mn;f(ri)".

(Notice that this result involves,",countingm.1
, ,

that r
1

is congruent to r
0
) and if r

2
has sides of'positive integral

lengths -'m , n , then, from (*) f(r2) = mn f(r0) Onpthe other hand,

'---ifx=171,y=3,1 n ,:thenr,,d is congruent to, r0 , and ye have, from (*),

(ro) =_f(r2) = mn f(ri) , so that 'f(ri) = m1 f(r ) =
1 1

f(ro) . (I.en m n
1 1

E
1
R

1
-1:1-

/ Nthe rectangle whose sides have lengths R , . , has area f(ro).)

m n'Finally; if r
2

has sides of rational lengths p = , q = ;- (m , n , t , s ,, .

I

2

t

:_ 1
,

.positiye integers) and rl. has sides oflengths- and then, a further
:tt s

'4?.pplictiO.on.ofz (*)
,;:Yvv.

'
,. , '-

"..=,1' '' ,, .' =
, .,

.74'

1

= pq f(r )

s
f(r

0
)

Thus we'have,provehrthe theorem if a and b are both rational.

Nqw let r be any rectangle, and let a , b , be t lengths of

sides of r Then a and b are positive real numbers.' Let k1 , k--2
4

be `rational numbers such that ik
1

< ab , k2 > ab . Then it follows from. the

definitions of thg real numbersland of multiplication for real numbers, that

there exist rational,nudhers yi x2 ,'y2 , such that ,

'1/4
(1) xl < a yi < b , ah xlyi = ki <,ab ;

(ii) x2 > a y2 > b and x2y2 =

253

25,7



f I i

Now let r1 , r2 , be rectangls with s -ides

1 [1

1 1

.,)

O yi , and x2 , y2 , respectively, each rectangle

..t 40
colllinear with Ithe

(same)
two adjacent sides of

r diagram:
1

1

.

It is easy to show that (see dotted lined in diagram)

(i) ttlere is a "decoMpositibn" of r such- that r
1

is one of tip'

rectangles in the "decomposition";

cii) there is a "decomposition" of -r2 , such that fr5... is one of the
.4

rectangles in the decomposition. (Of course it -is_ possible that

r = r2 .)

b

I

of -rational le*gths

having tw adjacent sides

r , as indicated in the

Y1

I ....,

X
1

v

x2

7-

Moreover the necessary intersection conditions are satisfied, and hence from

AR-2

f(r ) < f(r) < f(r
2

) ,-
7

But r
1

r
2

have sides of °rational lengths so that

f(ri) = xyif(ro) = f(r0) < f(r).,<_f(r2) xe2f(ro) 1c2f(r0);

kl < f(r) /f(r0) 5 1c2i.e.,

In other words, every positive rational less than ab is less than
1

f (r)If(r 0) , and every positive rational less than f(r) /f(r0 ) is' Less
-,..,

ab . It' follows from Our defnition of real numbers in 'terms of

.1
s that

54
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I

i.e.,

1

f(r)/f(rb) = ab ;

f(r) = ab f(r0)

which is what we setX.tt to prove.

Praofs of Corollaries.

1. It isitrivirlto verify that if f satisfies AR-1 and AR-2 , then so

then so does ,kf . Hate if f is an area functiob as in the theorem;-

so-is fo = (1/f(r0))f .- Clearly f0(r0) ap f0(r) = ab ; and'.

any area functidn f
1

r-which f1(r0) = 1 , must faere with fb on

, all of Pr .
-=

2. Let f be any area function, let r0 e
0

e region, and let xo
.

be the length function (for segments) based on a side of r
0

as unit.

Then, from the theorem, foi any rectangle r , whose sides haVe lengths

. a b we' have

.

f(r) = ab k(r0) 1w
If z iS any positive real number, choose positive real numbers x., y

J 6116 that xy = z /f(r9) . (CiearlY.thi Can be done in infinitely
.,,

many wayq.) Then, if, r is a rectangle whose-%ides.have lengths.*

#7JCe , y (in terms of xo) we have f(r) = xy f(r0) = z , and hence

t
f is onto R

+
Moreover, if we choose x = y = lz/f(r

0
) , then r

If
wt11 be a square. Hence f maps the subset of square regions onto

R
+
).

,,/

.J.

. If X
0

is ,any length function, then the theorem and Corollary 1 show
, .

, : . ..

that tlere is a unique area function f, (= i(X,), saY-) Tor'which
.

.----,,v,---- ,1/4J -- ....:.,....-
1

1 )

f0(r0) = 1', where eo is any square region whose side has length

' "1" , unde5:0 . If X1(X0) is another length function, let ,r
1

be a square whose side has Tength "1" under Xi and length a(4 1)

under-----1;6-1---Then if
. 1
ri(X,)=41.rwe have f1(r1) = 1 , and :

. . ..

f0(r1) 7-.,a2 / 1 . Hence f0 / fl , and therefore q is 1-1 We

.
still have to show tht is onto. Let f

2
be an area function; ,

-
st

4,

- then, from Corollary 2, is onto R 'and there exists a svare .
. . . 0

.

region r
2

such_ that f2(r2) = -1 . If X
2

is the unique length

i,
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'IR

1

function determined by the side of r2 y then nc,1 = f2 . Hence

B is 1-1 and onto; i.e., h is a 1-1 correSpondence.,'

"Tg fiT, f 2 , are area 'func ions for P
r

let r E PT
'

-with

'sides 01 c2 . Then, from the theorem
4or

fl(r) N(c1) %0(c2)] f1(r0) and"

f2(r) [%0(c1) )'.0(c12)] f2(40)

= f
1
(r) k

where k = f2(tb)/f1(ro) . Hence f2 = kf3. .

,...

.

Remarks: .

i

1. Chapter 13 of [14] contains an interesting variation on part of the
..

abOVe proof bf Theorem 3-5.1 andits Corollaries.. .

. ,

132. Because of the 1-1 cOrrespondence i of length Tunctioni-Nod area

functions it is very
.

convenient (but by no means necessary) to identify

and name area functions in terms of the length functions to which they

correspond under i . Thus, corresponding to the inch function
inro

we have a unique area function n(, ) which we usually denote as
in

fsci.ill,---(orfin2 ) , and which we normally call the "square inch"

area function; and w4en we say (for example) that a region r has an

area of 27 square inches, we mean that f
sq.in

(r) ;.21.......This '"'
.

. .

;vrelationship of length and area functions is yry important, and we
, r...._

.
...r$

.

- shall refer to it again in relation to "change of unit" guestions,

and in connection with the notion of '"dimenSion".

..._

&.O'm a practical standpoint, the 1-1 correspondence, of length and

area functions,2poupled with the hypothesis that this mathematical

°discussion is relevant to etrical measurement (i.e.,,that this is a

satisfactory "model" for part of the empiricar situation) implies that

it is not necessary to adopt separate empirical units for area. In

other words, the-"Slip rdsU for area (and, later, volume) aredeter-

,mined by the "standards" adopted for length.

9 6 ,,$) 256



3.

s.

i, .1'
_,.., k.v" .

' -: .

We have already discussed th uestion of 'extehding the domain forte:I:eh
..

tenth
,

functions,- and we dIScovered that, for each extension situation; there

Was a 1-1 'correspondence between the simple length functions for seg-
., , A

ments.tnd their to more complicated domain's.. We'shAil see

\fun ,

extensions

later that area ctions for rectangles

domains, and that each area ction for

extension. This uniqueness of extension

can also be extended to,large4r.,r.

rectanglesims its own unique

for the length and area furic-
,

(without ambigu1 434...

centimet4, etc.)

ve that ,

Theorem

tions is most important, because it enable6 us to use

the same names (inch, centimeter, square inch,isquare

for the extended functions. Moreover, we will be able to p

the relationship oi length and area functions_estahlished'in

3-5.2keloW, still holds for the extended functions.

4. In most elementary treatments, area functi54 are based (as suggested

in our discussion of empirical area) on an assumed_ "unit" of area; whidh
1%.

isusuaIly a square region whose side is the unit o length.-/If this

length unit is thf "inch", the square region is called a "square inch"

or an "inch square", and, the corresponding are,w.pAction is the "square

inch function". This is another example of the correspondence of mea-

sure fUnctions and units, with a "duality" of domain structure and

measure scale structure. ,From a,mathematical point of view it is

usually simpler to deal, with the functions than with "units".

Although we have not yet shown the existence of area functions for

rectangultal regions, it is convenient to "continue first with the above:Aralb

of thought, and prove a very important theorem relating are,.funciwas- and

the co responding length function by means of which the area funct'4

!'-

i' o ni, a5

no identified: -

.g

N; -

. \
Theorem 3-5.2. If X

1
and X

2
are 'any two length functions

/
for segme9tq'-

some(so that, for s k c R
+
, X2 = ky and if fl = 1(X1) i"', h(x )

. 1 2 '., 21,, .,4_
.

are the corresponding area functions for-rectangles, determined u;liquefir
-,

.

as above,
0

then f2 = k
2
f1

Proof. "FrOm Theorem 3-5.1; Corollary 1, if

with segments a
1 2

"a
2

fokitq adjacent sides, then

r. 3.s any redtangular region

0

:ra '44'4

te,
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Hence

/

Remarks:

sf

Zia. I

4.. .1 A
't'

i' -'1%

fl(r) Xlt) , a ad-4)*Eg -...' ' - ..,

. ,
'-';-'0'J' .

k";,,.,f

f2(r) =X2(cT2)'''%g(12)

. ,

e. -1 ,

= ( q)(al) 'TkX1)(a2)

".= k(kitcri)) k(ki(cr2))

t.

= k2f
1
(r)

f 2 = k
2
f 1.)

a

'.. '''St-'

e's,..4 ,
, 4'7

f0r,

) 2 41,..

1. This simple theorem-is the basis for all of the "formulas" relating

'to the conversion of "units" for area functions when (as is normally

done) the area functions are identified by the length fpnctions to
. . -

. .

vhich they correspond under' n . If 4important to.rementer that the

formulas are norpally_given in terms of "units ", rather than in terms

of'the corresPIPPP1! functions,. Thus the everyday statement

12 inches.eqUals 1 foot

is equivalent, in functional language, to

kin *= la
ft

Hence for,the corresponding area functions we have' .

Or

sq.in = 122f f
sq.

= .144f
sq.

f(in)2 = 144f(ft)2

j'

which, in the everyday language of units, becomes the well-known, but:

usually rather obscure statement:

144 square inches equals 1 square foot.

't
(The obscurity relates to the usually-ill-defined "scalar multipli.cation"

. .

of domain. elements by numbers, and the ill-defined use of the word

"equals"; as in the case of length, we,;can/make such a statement clear

by introducing a domain structure. If vie introduce an equivalence rela-
. . . ..

tion on the domain of the area functions (r1 r2 if,and only if
.

f
1
(r

1
) = f(r

2
) 'for any--and hence/everyarea function f) t en it is

262
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a trivial matter.to introduce. as we ,did itr length) an "',addition" (loin)

.and a scalar multiplication b positive real numbers,, foriequivalence

classes (or "units"),of the domain, such that this se becomes an '

R -semimodule. If "square inch" denotes the relevant equivalence

class, then "144 square inches" can be interpreted in terms of this

multiplication. However it is generally simpler (mathematically) to

use the language of functions, in.Wilich equality, and multiplication

real numbers have well - established meaningsrather than to use the

dual structure of he domAn.]

4 The "reciproAl" telationship of functions and units is undoubtedly
w

responsible for much of the confusion concerning "change of units", and

"change of,schla'; )
hat.nhere is not much that can be done about it.

It is a simple and 6biiious fact-Lthat the larger the "unit" the smaller
1..5.

' the functional values, whether foNgength, area, or any,other class

of similarity-related measure functions ,with values in R

with units.

2. The relationship between different length functions for-segments and

the corresponding area functions for rectangular regions can be con-
.

veniently illustrated by means of:a oommutative dl.agram..First of all,

observe that if a
1

and a
2

are segments, then the pair
.( l'

a
2

)

.
determines a unique congruence class, of rectangular regions (legions

with sides congruent io
1

, a, , respedtively). Hence, if D
- .

denotes the, set of all segments, 15 the set-of congruence clascies of

Segments, and is
r

the set of congruence classes of rectangular regions,

then there is as unique function 9 :15X15
r

:. (It is of

interest to note that for each (dl,d2) tDXD , there are

a, E d1 a2 E d2 al perpendicular to a2 4 and with a common

endpoint, such that 9(d,d)is the equivalence class 9f the

rectangle which may be "identified" with the cartesian product

a, X 02 Of the,segments al , a2,. Cf. the corresponding situation

for numerosity_measurement,

element's (finip sets) was

9 is clearly onto, and it

Let k-
/
k
2 /

(with
2
-=

where the cartesian product of donIin

againa domain element.) The function

9eisfies T(d1,d2) = .

la:
1
) be. any two'length functions, and let

259



fl f2 be the corresponding area functions under 1. Then we may

regaid f f2 ,as defined on 151., , since congruent regions have the

same-area, Moreover, as shown above, f2 = k2 f
1

The various results

proved above shoW that the fallowing diadem, is commutative:

(R+ x 11+)

ttt

Yc.

4

multiplication

X1 x X1.

x7 x b)

x
2

x,X
2

(R+ X 134-)

(1)

R
+

R
+

multitlication

2 .

Notice that the commutativity of the uppei, and lower "trapezoid s"

follows from th, definition of T , which was equivalent to

= f1 = ) x

where () denotes the multiplication operatiOn for R
+

,x 15''.you might' find it instructive to "start with .any (d1,2) e 7)

(or,with any 7 E
r

using the inverse relation to cp ; this inverse

is double-valued in general, but the diagram is commuiativevunder each

value) and trace the various "function- paths" for this eled.ent, to see .

just what the commutativity of the diagram implies. The relationships

exhibited in this diagram are important.fh the understanding of such '

common statements as: "area is a two diMensional measure with respect
,;,

tO length"; and "area has the dimension of (length.)2". We shall return

later to this matter of "dimension", but meanwhile-we Aserve that the
l' ..

"dimensionality" depends on the function 1 from the set of length,
.. .

functions V) the set of area functions. . 4
...

You might have wondered why we cria not treat toe area .problem for'

6
. .. ...

rectangular.regions-as we did t..17h ngth problem for segments, anti the

-angular measure problem, and first try to lish an "area atractui"

- .

.

.- [
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-.on Pr . The reason for this', is that, while'? Pr certainly has

may be given: see Remark f above) such a,strnc-Le.(i.e., an "area

equivalence" relation under which the set of equivalence classes is an ,

.

ordered R
+-semimodule)

there is. no straightforward Way of estaDolishing

this structure directly, within the domain of _rectangular regions.

It is possible (as we shall see) to establish such a structure directly

for_polygonal regions, and the treatment will show the existence of

such a structure for rectangular regions. Alternatively, we can show

the existence as in Remark 1 above, by using any area function' and

'nworking.backwards" frbm the structure of the positive reels.

4

We now come to the long-delayed proof of the existence of area functions

for rectanguliregions, In view of the fact that all of the results from

Theorem 145:1 Onwards were proved on the basis of "if there are any area

function.,",,f.we can shOw the existence of at least one such function,

t. then it will folloW that there are infinitely many, rAted by positive-.

sitglarity.trensforkations to each other, and that the set of all area

ftnqtions is related oy the 1-I,cibrrespondence 1 , to the set of length

functions for segments.
o

1 . 4

si4heorem3-5.3. There exists an area function for Pr ; i.e., there exists'

a function f Pr. ->R+ which satisfieathe conditions AR-1 and AR-2.

oof. Let r0 be any square- region) and let %0 'be the length function

for which a side of r
0

is the' unit of length. Let r be any rectangular
,

.region, and let a , b , be the length of Wits sides, under %0 40r.Then'Theorem

1-5.1 tellsius that if there is any area function for P
r, then there is an

area function f0 such that f0(r0) = 1 , and.sUch that f0(r) = ab . This

suggests that we take any length function , define a function

f: P
r

R
+

by
4,

f(r) = ab , (where a , b ,,are the side lengths of r under T.0) and

test fif to see whether or mot it satigfie6 AR-1 and AR-2.

The verification of AR-1 is immediate: if r
1 2

r' then the sides

c!,

.

of r1 , haye..the same lengths (under every length function),and
-L -

Y '-
hence- f(r ) = f(r )

2
.

.',.
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4.

, In order to . verif4

'r is the'union Of a finite umber Of rectangular regions ra . j (i = 1 , 2 ,
,

.

, n) yAich satilsfy the co dition that the intersection of each pair
.

r. , r is-either em consists
o
only of boundary points of each, then

7

we need to show that if a rectangular region

That is, ff

and if ai

that

n

f(r) =- E f(ri) .

1=1

a , b , denote the lengths (under xo) of the sides. of ,r

b
i

denote the lengths.9of the sides of
i

We need to show

n
ab = E a.b. .

i=1
1 1

The following diagr9ga of a typical decompogition which satisfies the require -

ments of AR -2, showshat this result is not completely obvious;
.,,

b

1

a

0,

it is convenient to breakdown the proof into parts by,means of lebmas.

We first define a simple decomposition of a rectangular region r , to be a

decomposition into rectangular regions by means df-segments whith are

parallel and congruent.to the sides of r , as indi.Fated in the diagram

below. 4

266 .262
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Lemma 1. If r is a rectangular region with sides of length a

with a simple decomposition into rectangular regions,.then

.

n m
ab = , Z Z a.b

j
i=1 j=1

b
1

b
2

b
3

a
1

a
2

a3 a
4

a5.-

b and

0

a

4
. . .

.
S

Is .

°..,`
.4

.

. .

.

.

,

. '...

r; 0 . ' i -
.._ X.

w

.....'

4/

...

.

0

. .-'..

(We are not really dependent CA the diagram, but it will save a great deal

of work to 'assume that what the diagram suggests 'is in fact the case.)

Proof. The proof is a simple application (twice) of the distributive.

property of mvltiplication over Addition, for the real numbers". and it

also useg'the known fact that length ftnctions are finitely additive for a

n

"partition" of a segment. Z a

i=1
a / and Z b = b .)

j=1
j

n m n m
Z ZaJ.bj =Z(ai.(Zbi )]

.

1=1 j=1' i=1 3 =1

.12r:
'....wl.°. .;

0
n

= Z [aib]

1=1

n

b Z ai
i=1

= ab .
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(If you have trouble with the summation notation, try writing out tWaUm _

"in fall". All that we have done is to add up the ction vaAsues-down eft e
-,- ....--.,

4 , A

"collie Of rectangles, andothen add the resulting s for the large "column

rectangles" using the. constant ;actor b .)
. \

We can complete the proof by reducing the general case (i.e., as for the,

first figureabove),to the special case represented by a simple decomAsition.,

We intend to do tflis by "completing" all of the Segments which appear as sides.

But here we encounter a minor difficulty: how can we be.sure that, for any

decomposition, the sides of the component rectangles r are parallel to

the sides of the union, r ? This brings\us to thesecond lemma:

Lemma 2. If r is a rectangle with 'S decomposition (a in AR-2) into a..=.
. ,

finite number of rectangles r
i

,(i = 1 2 , ___,,__n) , t en the sides of each

'rectangle ti are parallel to the sides of r .

1- )

Proof. Wee shall sketch a proof of this strongly intuitive property,0

which an be proved in various ways. Our proof uses an induction
,

on th number (n) of regions. If n'= 1 , ri r;:,and the result is
4

o
.

triviallY true for all r. Assume that the result holds (for all rectangles

*, r ) forvall decompositions which haie less than n ectangles (n > 1) and

.let r be any rectangular region, With a decomposition (as in AR-2) into

n `rectangUlarTegions ri , (i= 1 ,2 , ... 0 n) . Then (see diagram

below) all regions which "adjoin" a fiXe, side a of, r' (the left side in

the diagram) must have their, sides parallel to the sides of r . (This

follows directly from the well-known tran4tivityof the relation "parallel

or collinear" on line segments,and from t e fact that perpendiculars, in .

a fixed plane,go parallel or collinear lin segments, axe themselves
0

parallel or co&linear.).

.264
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Because n is finite, there isOne (or more) of these

to a , which has least "width". (The "width" is, of course, the,i_length fiat '4,-,

the side perpendicular to a .) "Complete" the corresponding segment parallel

to a (shown dotted to avoid confusion), and let, rt denote the 'residual"

rectangle to the right of, and including this "new" segment; Then he

original decomposition of r ,land the "new"'segment, yield 'a decomposition,

of re' Moreover at least one refatangularrion (two, shown with darker

shading, in the case' represented by the diagram) of r which is adjacent

to a , does not appear in' rt.; and the remaining regions o r which'are

adjacent to a , correspond 1-1 with "reduced" regions of rt at is,

rt has less than n regions. Hence, from the "inductive hypo esis"4a,

11 sides of rectangles in the decomposition of rt are parallel-tO the

s des off' rt . It follows that all sides of recta gles in the original

omposition of r , are parallel to the snes of r . ,

4
4

We now complete the proof of the theorem by a double application of

Lemma 1. Given any rectangle, r and any decomposition (as in AR-2)

n

r= U r.

i=1

"complete! this decomposition to a simple decomposition of r by "completing"

ball of the 'sides pf all.pectangles r
i

(See diagram on the following page.)

.

-----:.
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1

I 10

. I
I

1

.. i I

1 1

A

=a1101.1110

.-- 4-

A

For this simple decomposition of' r , let
rik

be a single rectangular

region with sides of length x:j , yk . Then, from Lemma 1
/

( ab Z Zx3yk . d
..

..,

(To avoid making a simple idea'seem complicated, we do not,develop a de-

:`..tailed notation. The double summation signsimply means that we add up the

15rOAu6ts x
j
y
k for each of the rectangles in the simple decomposition of

, . .

; :.'r( which' results when all segments are "completed".),
-w -

'." We nowlibserve tbat,the "completion" of the origin al decbmposition,q
,A :. e

r also yields a simple decomposition for each of the rectangles r
i

in .&. .,

e- 9 ,

r

original 'decomposition. Moreover each rectangle rik appealb in the

resultingiimple decomposition of'exactly one of the original ri . Hence

160
,the sum F x y can-be broken dOwn: we can first add separately for all

. J k

,rectangles r in,each ri a and then add for all r Thus we get
;:

1t I

ry

ELxj y)
i=Z1 rj1Fui.

x
j k

. .

Pt = E aibi (frog Lemma 1. )
i=1 ,



But we have already seen that = ab (Lemma 1 again) and hence we

n n .

.- .

have: f(r) = ab = E a.1 b
i

= E Ai'
i
) . In other words; f satisfies

t i ,
AR-2, and hence f is an area function.' That.is, th6re exist area functions

i=1 i=1

for rectangular regions.

Remarks:

1. The above proof is much harder to write down than it is to work out.

Don't be deceived into thinking that it is difficult:

.2. If (as is common in elementary work) the area of a rectangle is simply

defined to be the product of the lengths (under some length function)

of adjacent sides, then the above theorem proves that such a definition
0

is consistent with the addit.4.Y4Y-,PrZWC: This property is

generally used in elementary work without being explicitly stated.
k` 1 ,

,*k
/Am

Area Functions For Polygonallfegions. We return now to what is usually

called the "elementary theory of area": the study of the existence and

relationships of area functiong tof polygonal fool:eons. This theory, which

is.strongly geometrical,in character, ha an extensive history, 'partly re-

lated to the fact that one of its most fam us theorems (Bolyai's Theorem:

that polygonal regions have equal areas only if they are "piecewise congruent

under decomposition"--see below),has no counterpart in the theory of volume,

a fact which was only proved (by M. Dehn) at the beginning of the present

century.

Area theory for polygonal regions can be developed in different ways.,

One way is to_proceed as we did in developing the notion of area for rectangu-

lar regions, by defining "area function" and then establishing the existence

and properties of such functions. Relations of "equal area" and "greater

.area"can then,be defined by using these functions.

Another way is to proceed (as we did for length)'by,defining a relation

of "equal area" and developing E semi-group structure on the resulting set of

equivalence classes before asking whether there area functions (with positive

real values) which preserve all of this structure. Such functions

of course, area functions.' Each,pf these approaches-requires about the same

apounipof work to carry -Ulm

,.
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We adopt the first of these methods of approach because we wish to

etphasiie the closeness of the method (in Spite of the more complicatFd

details) to that which we used for the discussion of area for rectangular

regions. You should also re' back to the discUssion (in Section 2-8) of

length for broken segments: there is considerable similarity between that

/- discussiOn and theone which we now give for the area of polygonal regions,

although the cor4spogaing area theorems are somewhat harder to prove.

r" .
As above, wedenote by P the set of all polygonal regions, and by P

r

4 the sghset of rectangular regions. We define a function

-,

f :-P -)R+ to

be an $rea function for -P if.it6satisfies the following conditions.

AP-1. (Congruence condition). If pl , p2 , are two congruent polygOnal

regions, then f(pi) = f(p2) .

AP-2. (Ad itivity condition). If two polygonal regions pl , p2 are

such that their, intersection is either empty, or consists of boundary

Remarks:

points only, then

1(131 U p2) f(p1) f(P2)

4.

Z. In this definition of area function we have referred to "boundary points".

The notion of boundary is a topological notion: we could define it as

the union of \hose segments which (in some triangulation) are on the
.

boundaries of only one region, but then we would need to -sh.Q.L4that this

definition is independent of the particular trianplatidn. Alternatively,

we may define interior point of a polygonal region to be a point with

the property that there exists a circular region (easily defined) with

' that point as center, and wholly contained in the polygonal region:

boundary points are then those points which are not interior points.

Clearly, this definition is independent of any triangulation. It

14 not hard to devise other definitions (e.g.) a boUndary point is "one

which has the property that there is some segment in the plane...of the

region, for which the boundary point is an interior point, and such

that all points of the segment ode one "side"-of the boundary point lie.

outside of the region) but-it is not particularly easy to work with any

of them. In the subsequent discussion-we will use,the notion of boundary

and interior intuitively, but it is important to know that these ideas

can be handled precisely.

272



. A simple proof by mathematical induction enables us to extend condition

AP-2 to a polygonal region which is the union of a finite number of

polygonal regipns whose interiors are pairwise disjoint. We refer to --

the property proved by this extension as finite additivity, and we refer

to the finite set, of Polygonal regions (with peirwise di oini interiors)

as a polygonal decomposition of their union.

In an, effort to help you to follow the sequence of ideas involved

the development of area theory for polygonal regions, we summarize the main.

steps:

(i) We observe that conditions AP-1 and AP-2, applied to the

subset P
r

of rectangular regions, imply conditions AR-1

and AR-2 Hence, if there are any area functions for P

they must be extensions of area functions for rectangular

regions.

(ii) We prove that if f 'is any area\function for P (and hence,

suitally restricted, for Pr , so that there is .9. "corresponding"

length function X , with ri(),..) = f , as above) then the value

of f on a triangular region must be
1
bh where b and h

are the lengths (under x) of any base. and corresponding

altitude.

(iii) It follow; from finite additivity, that the value of f on any
.e

polygonal region must be the sum of t
1

he values bh

triangles of any triangulation. Thus if there is an area

function, it must behave this way.

(iv) This suggests that; foi,a given' polygonal region, and a 4xed

length function, we should try.to show that the sum. Z(2 bh)

(taken over all triangular regions in ariangulationY is in-

/ .dependent of the particular triangulation, so that we can/use
-

it to define,a function from P to R4-.4"ff thid is to'be an
4 7

'

area function, we must show that it-satisfies AP-1 and AP -2.

*it

. We now proceed to fill in the detaiis. To keep tlik_t;eatment Within
_____

reasonable bounds we will give formal definitions and statementi\of theorems,

but we will only sketch most of the roofs. Moreayer,to some extent Irermill

.269
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O
Pk 1

. 4 ) .

2; .

depend on diagrams, and Eissume that what appears to be :IVCase actually is
oi

'the case. To carry out all of this in complete detbil is a lengthy, and

0

rather tedious; undertaking.

vc

Theorem 3-5.4. If f : P is an area function for polygonal regions,

then flP
r

(i.e., the restriction of f to the domain P
r

) is an

. area function for rectangular regions.

Proof. AP-1 implies AR-1, and AP-2 implies the finite additivity of flPr .

Theorem 3 -7.7 If X is any tpngth function, and if a , b , c ;

a' , , c' , denote the lengths (under X) of the sides and cori.es-

\bonding altitudes of a triangle ABC , then aa! = bb' = cc' . '40

Proof. The diagrams below ifiustrate the situation, (i) when one angle
,

is a right /angla,:. (ii) when all' anglaxare acute;

is obtuse. These are the only possibilities.

ti

A

(iii) lien one angle

A

B = A' = C'

A

a' I

a = c' C

B C

A' a
C

. \\ /\ /\ ' /

1(iii)-1---_ =_ \\c__......,.....//
, \\ ..- . //

c '

\ ./\ /
ye

2 7,4
279.

C'



d ,

In case (i) ea' = cc' is trivial;"and aa' =,bbil follows framsthe

similarity of .ABC and 6BBIC , which gives OA = Wa . In cages .

(ii) and (iii), we have 6ABA' similar to 6C1C1 so that a' /c = cy/a ,...

whence ea' = cc' ; that each prodliCt is eqUal'to° bb' is shoWn gimilarly.

1--4

\Theorem 3-5.6. If f is any area function-for P 1 and if X lis the

length function which corresponds to the area function
t

flP
r

'(i.e.,

f has value'-111", on the square region whose side length under T.

is "1"), then, for a, triangle ABC with sides' and altitudes of lengths

a , b ; at; b' , under N. , we have

1
= -
2

1

2
1T

2
(AABC) = ea' bb' = cc

(The symbol AABC denotes the triangular region bounded by /MO..)

Prdof. Prom Thedrem 3-5.5, it Ys auffic4enkt6 prove_thatz,:f(4W) =
1 48.1

sc

:Three cases need to be considered ao are represented by the diagrats

(i) , (ii) , (iii)

.4

°

J

I.
,

`1_

1(f7 ........ ..



In case (?),
AP-2, f(rect

Hence

In case

L\ABC LiDA ; hence, from AP-1, f(AABC) = f(ACDA) Bit, from
. ADCB) = f(AABC U ACDA)::

= f(*A.Bc,) f(a.CbA)

2f(AAB^)

f(LABC = f(rect. ADCB)

1
= -2-aa

(ii), Air similar reasi;is we have f(rect. ADCE) = f(rect. AFJ3E) +

f(rect. FD.OB) ;

therefore ' 2f(AAEC) =,-;2f(4AEB)

therefOre_2f(AAEB U ABC) = 2f(AAEB)

therefore

therefore

Case (iii) 4s

411101

2f(&ABC) eat ;

f(AABC) = aa',

. -
+ aa' ;

+ 2 f(a. ABC ) = 2 f(A AEB)

left for you to cw4lete for yourself.

+ aa'

We have now shown thato, if thereare any area functions for. polygonal

regions, then each gives an area valgeto triangular regions which agreesm . ..

with the familiar "formula". Because of the additIvAty conditign AP-2, this0
:.

means that, if there is to be an area function f for polygonal 'regions,

then for a given polygonal region p , and ark triangulation p = oq,11
.

is a triangular region) the ,valtie of f on, 15 Must be,0

(where each Si,41

2 f(8i) ,or a,ai) , where aic
'suggests that we tes

-"way will satisfy AP-
.

o

this possibi1i

and,AP-2.

are as above for Si Thir

Ito see if a ,funotion defined. in this,_.
o 0 : 0

/1
ar r tgion

, o 1.,

Let
0

be ,any length"ftmction. For any trian
-

let x x' be t e lengths (tinder
0

) of S.

1
; .

"altitude".. Define a function f0 by.

(As we saw-4.bol.raithis

p be a polygonal regio
° , .

We 'f.,xten9t1. the domain of the function

e,,

1f0(6)
'= 1

1 ,

lue does not depend

8

"base" and a corresponding

on'tf-Te choice .of. base. ) Let

with a Vriangulation {Si} ,. i ;DI 2 .. , n .

.
..-.

f
0 to include each triangulated

. 1

' )71,:, 2 7 6

,

-,:27.

. ,



7

polygonal regiOn (p , {Si)) by.defi4ing

(P z f (8 )0 - i
i=1

i

;

For each triangulated region this gives a unique value, and hence a function

0
is defined for triangulated _regions. We wish to prove that the value of

s

/,
andf

0
' on:

/
(S

i
))4,depends only-on p Land

/
of course

/
on ?s.

0
) not

. .

on the,triangulation {Si) . he proof of this is rather complicated in

'
, _detail, but the idea behind it is similar to tbat which we used in proying -

the corresponding result for rectangular regions. (Theorem 3-5.3.)
. .

e

,

Theorem 3-5.7. Let (Si) , (6,1) be two triangulations of a polygonal re-
1

--gion p , (i =1,2 , ... ,m ; j=1 ,.2., -?..',n)..-s\Then

' . m, n
f (p ,-(s 3) . f (p (6.)) . (I:e.,. Z f 0 ) . ,z f

0
0

1.1

).)
el t0. 0 i 4

j' i=1 j=3,

r \ '44114*

.

Ih order to make tbEppro& easie to follow, we prove-two 'lemmas. We

Si* define a s ivis f triangulated polygonal region (p.) (Si)) ) ..

to be a triangulated polygonal region (p ,4S1t)) , such that each triangular
,,;

region S;t is contained in some *Si ; and we refer to the-triangulation

as. a ref in me nt Of the triangulation (0
. ,

bemna,1.- two' triangulations. (Si) /

h v a Common r fihement.

11

of a polygonal :region

Proof As above, let i run from 1 in.., and

1, to n . Then w- have (from the elemI,
M

from

ry algebra of sets)

n ._:. . m . n_ m n
p - - - : U S = U a, = u(s ) n ( u s )-= u ' U (e. n i> ) . The set's

i=1 1 i J=1* i i- ,'!" j=1 J i=1;j=i i Jr . J .,
I ,

.
b. and Fi are "_triangular region.. Each is convex, hence theirinter-4?;

section must be a convey polygonal' region with 'three, for 'five, or six
,.,

sides: ane extmples are shown in the,d egrambelow. (Ifi' ase.you are
,..,, A

of fami iar ith the notion of a:conyex region s one with the

roperty that it Contains the segment dining any two o ),i, /points; you
. \

it
it ,

convexity,
, , \ *, ,

may easily prove that the intersectio of convex regi9p it convex.) Any
.. ...

convex polyOnal region can, of tour be triangulated e dotted lines

I&L)

-

P /-

7 4:
..

"`"*.



itt

O

!, (/0
\.... .

in the diagrams indicate one way of 'doi -ft tai's for each finteriectisjin'ihown. ,1

I

To keep the diagrams simple, We do not attempt to show the resulting, triang

lation of it beyond a single interseetdon. 8 n'i (s* . With darker \-----...........

shading). Moreoyer, we do not illustrate all-of the' varioUs ways in which
0

311;4, 5, .or 6 -sided convex regions" can arise as interseetioas, of two tri-

angular regions:. this does not affect the proof'. _By triangulating -each
4" "" \ i. . I

..= ,,,,,,

6 n E and by ob,s'erl.ng that two'diferent conyeii.regions Si' n Ei 1 i ,
-1

i '1
I ,

I I.-.
..

, 7 .

812 n , 0
s 2

, intersect, (it at all1) only in theii boundaries, .cietcan .btad:n
,.

., d \ .f -;--,
\/

aa" triangulation of p which . common refinement`, (8i ) and (.8 )...
., . ?

. *, t._ , , . ,:\
f.

.,......-

0

I-

2'7 8 274
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s

Remark; Now tha, We knoW that any two triangulationi of.a polygonal region

p have a common refineMent, Theotem be proved if we can prove

that the value of fo on a trilngulated-polygonal,regiOn (p (5i)) is %If

..sailleasthe'valueoff0 PnallYrqfillementof NoW f
0 i
tp (5))

'. 4,
,is simply the such of the values of- fo on each trianguly region Si , and

a refinement is/the sum of the values of fo on allthkvalue of f
0

on

triangular regions in the refinement; To find this latter sum, we may add

first for all t 'angular regions in each Si separately, and then add these'

partial 'sums'.. Hence ?he theorem will be proved if we can prove that

has the same value for a single triangular region and for any triangulation

of that region. In order to show this we.need another lemma,

Lemma 2. tet. AB
1 1
C be a triangle, and let B

2
C
2 3

B"C
3

BnCn

be segments parallel to B1C1 , as showp. Let ai be the length,of BiCi .
4

(with respect to a fixed length function) and let h
/
be the distance

' between B.C. and B1.4.1C1.41 as indicated (1=1 , 2.;... ; li:r1) , with h
n

_ ,

:-.
i -

the altitude of 6AB
n
C
n
-. Then

( a1 + a
2
)h

1
+ ...( a2 + a3)h2 4. .. . .+ anhn .

,.-.2-.

t
Zsz?4,!1..i.:4'

r

.
S

n
' ,

,

D
1 , ,r, ; cdrl:;"

.j 7.4.14,f'
.7.. r

1.4

^ 4 '
4 ' 4 3 %

4..7.

n '.
'

- Is 'i.-.....--, , . 1 I
, `.4.% . --'1.-`?". : 2



roof. We give an outline of the proof only; e. detailed proof

requires an induction on n . 6.ABiCI is similar to 6,Ally
2

. Hence

(using the finite additiVity of length funAions)'

4

therefore,

Hence,, adding

n

( Z h.) fa = ( Z h.) fal
i 1 '1

n n
al Z hi = a

2
Z_h

1=2 1=1 I
n

= a2 h
1

+ h2 Z hi .

i=2

to each side,

n n.

a1(AD1)
'''.-- al

Z hi = a
1
h
1

+ a
2
h
1

+ a
2

Z hi ,
i=1 .. - . i=2

t n
= (al + a 2).111 + a

2
Z hi

.
-1=2./\

Repeating this process, we' Obtain the 'required result: it is not hard to '

give a complete proofby indiaction. This rather simple ,lemma is the key, to-
tthe prioof of the theorem.

I

Proof of-Theorem 3-5.7 At observed earlier (see remark following the proof

of Leung lAsit is sufficient to prove the theorem for a single trianhlar
-

region. '5 , anoli, a triangulation .(5k) of s; Let. 5 =AILABIZ , and let .

xt be the lengths, tkrith respect to a fixed engthfuAction) of BC ,
.

'and the Orresponding, altitude. Through every v rtex g/'""ee411 triangle 8k
I .

_ . .

,,- _ ..
in the riangulatidn, draw the segme is w re parallel to BC and

whose end'points are, on AB , AC ,,Irespec tvely, Th se 'segments will .....),..o.
. .t. . nv t ,1 z 4, ....;

decompose A Partid' nr region '8
k

'.',8:6 indicgtek on e fdl2Ow4ng page.
..... ,

1

v
e :

L y, , / \

4. 9.
? r.

4.;.-

0 '; d

.



a

h'

'

For 6 if q
tit /

denotes the length of the altitude -from Y
k

-to Xk7
/
we

have (using mainly Theorem

xOlt q(XA) q(XkVit VA)

=q.(KkVk) + q(VkZk)

+; hitt
(YkVk)

0 . ,

Hence, for the region bkl."the product xkx.ilt can be broken down (as in
f

t .

Ziemma 2) as 1.13(cle.+ dk). (We do not attempt to develop a detailed

4
notation, and we recall that.thls sum has to be properly interpreted for

the "extreme" triangular regions at Xit a d Zk :)

-We point o that what we-.ave achiev d so far,-, thro`agh the use of
41,..,

Lemma,2 is to break dasih the number x,.4.. into a sum of separate -products,
4%. A g,

,..

of ,numbers corresponding to certain length obtained fibm the regions into

which 5
k

is divided by the segments pars lel to AB . We now cOmple-6.6
-- .

* 0
,

the proof bY."adding" these subproduots across each full "parallel strip"

of 5 , and then we useLeMma 2againon this."parallel strip" decomposition,
1

.5). At no stage,Are'we adding "areas"--whenever numbers are added they
-4..0.

'-Ir.;66t ined from, length functions, and we make strong uae, f th additive
t, a

Petop, f length functions on "decomposed" segmepts. As in.th casetof
,

. .
.

rectan ar regions,we alsoAlee the distributive property,of multiplical
t

'tiofi overtddiAlon. . The diagram below indicates the regions.6
/
6
k' /

and

- - .
. . .

,:.one full "parallel strip" which includes part of, elk,. To avoid cluttering
0

\ ...,' -% 0 1

.. 1 ' \ .
,;--

, .

277 981
4 -

44

es



?"--\

dk

1

0

f.

B

up the diagram, only one "parallel _strip" is shown (shaded) and the. boundaries

of all triangular regions (except k) are shown dotted, except where they

intersqct the 'strip shown.

We now have

.

I 4

,

I, I

Fo fixed hi', the term E hick and Z hjdk in t*s total:stmi can be

co /e6ted, and the common factor h
i

can 14 taken out. The ,resulting

. \
i c

k
and Z dk simply represent the sum of the lengths of segments whose

k '
x,x1c =

.k.
1E h

j
(c
k
I+ d.))

I

.
.

A fht eriors are disjoint and whose tinins ard4.B C B- C ' respectively.
IF - J J 2 J-q- J-11- 2

Hence, if the lengths of these segments are ,:p ; p respectively, it
j , j+1-4k1.

.
,

,,,,, , . ..

. I I follows from the properties of length functions that these's r V-.)cV

hi) are ,1h y ' :and 191 p r/spectively. I We thus obtain /
j j+1 .$...,

.

..z..5.4.L. h (p*
i J

J
j+1



O

O

Afurtner applica o of Lemma 2 (applied to ) shows that

right is xx' Hence w have

xxl = xot :
k.

the-atiM-oh-`tfie

.

-.

., c

toother words, theldum: Z xkxlt has the same value (xx,) :for et tri-i
!,

. -1,.,'

- k ...

'.'..

1 1
=

,

angulation of b . It follows that Z xkxk - ,r, and tnat;tb .,1!1 4
k

' . :0 :4,
.

.-,
on the lieft is the same for any triangulation. Hence the yalue of f on

e IF:

.

4 I

,

a triangulate polygonal region is unchanged under "refinement" of the
. *4---

171.7triangulation; and because any two triangulations have a commonir@finement,
.

, . -. '

f0 is a function of the polygonal region only, and is independent of the

triangulation. This completes the proof of the theorem. Admittedly the

o
details are fairly 'complicated, ,AP it is difficult to devise a stmple

,/

notation. But the underlying s are quite similar to those used for

rectangular regions: the essential. idea of the proof (as was the cast for

,*
rectanguiar regions) is to reduce things to the point.phere we can. use our

:'-

knowledgg of the additive properties of-length ftnctions on segments.
,ast4,2...?....

_ 0 1 .4,,.

Let us now review4wbat we have done. We have shown that if there exist

any area functions for polygonal regions, these functions must haye certain

properties'in relation to triangular regions and triangulittions. We have

used these properties to motivate the definition of a, function for triangu-.,.

late& polygonal regions, and we 1iave shown that this function does not/depend
,oie

on the part cular triangulation._ We thus obtain finctibn (for which e use

the same s bol) f : P
+

, where f0(p) = f0 = E
1
x.q, for

any triang ation f4e-wisn to pi-oife that -fo ii-an area function

fOr P . e fact ths4'" f
0

saiisfleL the congruence property Al%a is

immediate: dridevonelruenee all of the length values .xi , xf are uh-

dhaniec This leaves the additive property, AP-2 , still to be iroved.'4'

t

Theo eni 3 -5.8.
4 ,

(i). ' The function

function' satisfiel AP-2, anehence is an a

1

f
0

: Rt defined above from a length

for polygonal regi

If r is t;. rectangula

and b under the length function X0 then f
0
(r) = ab

4,

, 279 9

tion

region with.sides of lengths



,G4

that the reA-Tittion

regions, is the function

0

f
0
IP
r

of f
0

to rectangular

11C0) .

*

(iii) f
0

is the only area function for

Proof.

P which extends the

fu ction f IP", and hence the 1-1 oorrespondente , n

of length functions and area functiondfor-rectangular

regions,,ext nds to a 1-1 co4espondence of,length functions

and area functions for polygonal regions.

If f is any area function for P , then. .

area

kf , for each k e R +,

f
o.

is onto R .

If f
1 ' 2'

are any two area

some k> 0 f = kf
2 . 1

7'!

The
7

proof o
..

\

so is the funbtion

functions for P then for

luArquite simple, If p , pt ,r-are two

polygonal regions with disjoint interiors, then two txdangu-.

lar region Si 8f in any triangulations p5' ] (Si)t j - J.

of p ,.pt , respectively, also,liave Ipjoht interiors.

HenCe (Si) U (451) is a trianiUlatfohlot the poligonal

= E f (8 )
0 i 0

region p u Pt Hence f6(1) U.

. = f0(p) 4* f6( ) t,

1

(ii) 'Th is immediate: the rectangular region r can be given

-.1

a triangulation (by completing one diagonal) is the uion°of
*

two congruent triangles ,t)
1

and f0(8
u
(

a) ,- _ ab

hence ,from (1), fo(r) = fo(81) fo( . Hnce folPr
.

, J.
is the unique area ¶ction which covespo ds to Xo....,.unHer

i

the particular 1;.1 orrespondence T des ribed earlier. .- - ,
,'..-

(I.e., f0IPr is the are function for li feh the square
.;,. . ...,

ididenln with respect to ;

;
hae ared ' d .)

. 9 0 1
J,

.

2 8 C.



7,

es

/

r
- I

ylv-;

rec&angular regions, carries over to, a
,

wil.i.bh,hap use same symbol,. ) of length. - runc
J.- ,

-

, -

If V
0`

is any of fer area

then
.

t

lP
-r.: /

/
f0 i f=

0
IP
r

.r
. 4

y. .

ztion which extends

:It follows d'rom 'Theorem 3,5.8 that
1

triangUlar regions: Hence f6r any. polygonal' region- p

with-- any_ t riangulat Ton (6 1." I , 1'0( p ) = Er fo( 6i
i

a

6 )
A /

IF

fowis r

f
O''' 0

agree on all '

- -0 ,q f0(p) so that , f, .= . other words each area funlition

fir rectangular regionl can be ex' Vni71,04 to polygonal 'regions
,

in eixactly one way. Moreover, as;Ve saw earliei-, eveiy area 4

function for polygonal regions is an extension of an area

firiction for rectangular regions, henpe the 1 =1 correspondence

n of length functions for segment and/area functiOn* f r

( v)

/- (vi)

,f

1. The importance of (iii){ above is

1-1 cprresportlen

ion

anti area.....ftielkoins for polygonal regiOns.

; which is quite Otte-spar:ding

ea functions for 'rectdngular regiohs, is.

easily verifie \
f IP is erlileacTi'7.an R4' .
0 r

This prop.'
propert,i for.

it '416,.4 -

This r ult be established directly, as for the

correspondip '4,ult for length functions; orit can be
, -

derived (see'be w ) from the corresponding result for
f--

rectangular reg t .

that

; ice )
we can use:4114,..*s

.runctions (inch function,ction, foot Sunction, etc.) to
,

fieme,

he ea ctfonsfor polygonal regions, giving them'.

square in
'4-11

frxt

ction"; "square foot functions", etc.)

Igliscuission Of area for rectan
,, ,

SU,14/(±V). (vi), show that

reg °Os are similar;(i.e., the se'
0

sea- e). This .situaiori is quite

and it is a dimple matter to é

length
atibiguously)

Ve names

Used

.
ar re ioyrs.

P

IY area functions for; poily nal

_A of such functiolis?',Ad a ra
",

imilar to that _for lenAh, fianktions,.

ow that '(A 1 +); is an -seit'.4:module.

t .

This situation_ ill continik'''-t'Ohold.14 d6tain is #slather exte

sl

1

f K



4;

,

-Change-of Sgalefor Area Functions on Polygonal Regions. If Xi and

X
2

= 10,
1 are two length functions, then we have seen that the correspond-

ing area functions f
1

= 11(x1) , f
2 \)

71(X.,e ) , for polygonal regions, havi the

property- that, for any rectangular reg

Angular relpn 5 , with base and a titude

x2 , , under 7.2 , we have

f
2

(a )

Hence for any polygonal region

f2(P) =

1

f2(r) = k fl(T) . For any

x x* under
X11 1 1

(Ipc1)(kx11

2 1
= k xixi

= k
2

f
1
(8)

ana, anY triangulation

Z f (4 = Z k
2

2 8i)

Hence wehave proved the following

= k
2

Z fl(8i)

= k
2

f Tp) .

c

Theorem 3-5.9. If fl , f2 , are the area functions for

as above to the length functions X
1 , 2

(=k%
1
)

f2 k

2

fl

RemaNks.

el. The! preservation of this relationship in extension of area functions

from rectangular to polygonal regions is very important." It'means that,

in considering the are s'bf polygonal regions, we can.continile to use

the familiar4"formulast for changing rea units, and for relating area
A'

funptions. This prop rty will contAn e to hold

the domain of area functiona..

.

(80 ,

P which correspond

respectively, then

hen we her eXtend

2. If and are palSig04regiplie.. with ) = f (p ) 4'

area
fl'-1 2

,function .then f (p any other area,
I 4 1 V.ri

. 2 2

When t is%dituation4plds, 4e laSCthat p., have2 4 -4;11 G
p and
1,

282
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same area. It is trivial to prove that "same area is an equivalence rela- _

tion,on the set P of polygonal regions.
-

" Monotonicity of Area Functions on Polygonal,Regions. We say that p is

a sub - region of the polygonal region p' , if there is a tria ation )

of p and a triangulation (m) of , such that every .bi is a
. LI

btj If f is any area function, we then have

f) g(8i1,< 2 1(51) ...f(p9)

)

and the inequality is str4*...af p is a Proper sub-region.' (I.e., if there

is selle 61 which is not a s..) Clearly this monotonicity property holds

for all area furictiops, so we 8an%make the unit-free statement )'-the area

of .p is less than or equal to the area of p'

Piecewis+ongruence Under Decomposition::Bolyaiis Theorem '\We introduce .

a relation («) into the set of all polygonal regions, by defining
.

pi « p2 if there are polygonal decompositions of pi, and p2 which

4 -

correspond 1-1, with corresponding regions congruent. Hence, in particular,
.

if p1 t p2 then p1 « p2 . It can be shown that congruent regions have

congruent triangulations (we cannot go into detail, as we have not 0)-eloped

the general concept of congruence) hence ''1)1,- p2 if and only if pi! .and

ions;p2 have piecewise congruent triangulations; i.e., triangulations such t

there is a 1-1 correspondence 'of triangular regions, with corresponding
---^,,

re 'ons congruent.

1

.

'It fol itNrS from the properties-which we have deveAped fo area func-

tions, that pi . p2 , then f(pi) = f(p2) for every area function f .

.

The converse result, which we gi e below, was proved about 100 years ago

by Boiyai.

Theorem 3-5. O. `if p
1

and p
2

are polygonal, regions with ,the same.area,

10
gery
1

4

We break do the proof with t lemmas:

Lena 1.' -The'r lation « is an e uivalence re tion.

283
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,Proof. The proof of symmetry and reflexiviV is immediate.* To
0

pro transitivity we note that.Jif pi « p2 and p2 « p3 , then pi had'

triangulations (8) , (8".) , wba4are'piecewise congruent to triangulations

--.
.

,

i 0

of pl and p
3

respectively. We know thA there is a common refinement .

.A
'

4 e
(8 ) of A

J 'lb
B!) And (8") and this refinement can be 4'Copied" using-ttfe,..

4f
original piecewise' congruences, to give piecerise

'

congruent triangulations -

of pl , p2 , and p
3

. (We are using here the fact that if two triangular
6

regions are congruent, and One has a triangulation, then-the other . has a

1.piecewise congruent triangulation.) Hence
*0

p
1
. p

3
. '

4

k It'
4

For the remainder me the proof of this theorem we use the word

"equivalent" to replace."piece;fise congruent under decompo4tionis!. It ao
, .

is any fixed spodent, we define a norma9. reetangular regilon (relative to a )...

. .

1 e
. ...-

ttq,be a reat gular'region *ith7one side congruent to a
, o

, ..4;
,.,.. .

Lemma 2. .4

.,,r
. (i) Every'triangular region i uivalent tora rectangular region.

i

. (ii) Triangular re ions with congruent bases and congruent cor-
, .'C respondInI altitu de are

.

equivalent,
,, ,

(iii) Every rectangular - region (and hence, frail (i), eve

triangular region) is equivalent to a normal rectangular

Proof.

(i)

region.

.1
r

We ahoy first' that every triangular r

a base, is equivalent to a rectanipl

be and half tle altitude, Therfigu

111

.

1

n, with any site
e'gion with the s ins

hows thd wious
4 by.

,cases that can arise, and the proof.tan be completed by'

stowing that the different regions which)are sibi/alziy,
.-.

bered, are celgruen'.

2git.

288
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B

(a5, is parallel ta, AB)

B

0"

It follows, by the transitivity.of equivalence, that

triangular regions with congruent bases and congruent cor-

responding altitudes.are equivalent to congruent rectangular

regions; and hence to each other. \

(iii) We show next that any rectangular region as equivalent to a

, normal rectangular region:

'AO \
Let BXIC be the given .rectangular region, and let BZ be congruentto .

a
0 '

with X Z , on the 'same side of BC as shOwn. We complete the roof

for the case X- lottween- Z and B . (If Z is-betW6en X Land B the
' -

proof is similar; if Z = X there,is nothing further to prove.)

285 2829



-

s

.--
Let XW be parallel to C , mee g BC at W , and complete they

normal rectangle BZVW . To show that th rectangular regions BXYC BZVW

are equivalent, it is clearly suf talent to show that the "half-regions",'

ABZW and ABXC , are equivalent: e latter equivalence follows from the

facts that "AliEXW is common, and thai AXWZ and AXWC have the same base

,and congruent altitudes. It follows om thetransitivity of equivalence,

nt to a normal rectangular region,that eve 1.triangular region is equival

. . ,

. ,

Proof ofTheorem 3-5.10. Since eve triangular rejAon is equivalent to a

normal rectangulax_region, a polygona region p ,withwith a triangulation
, .

(b.) (i=1, 2,.., n) is equivalent'to a 'normal re,Etangular region obtained

1
by "joining side-by-side, normal rectangular regions which are equivalent

-

to the separate Si . The diagram illustrates the idea: this "join"

49
property-is one of the reasons for using rectangular regions with one side'

congruent to the fixed segment (sot'

.1

3
. .

.

n
.

. .0

,,

. .

polygonal,
,400,..0.-

We have now shown that each region is equivalent to a normal

rectangular regton: 'We assert%thg this aimigilrectarigtilar region is-'
, .

,_,
uniquely determined, up to congruence: -

N. .

Let x be the ltngth function 4hichcorrrsponds to a ' as unit, and let,,0 S,,-O .., , t .

, i

fo(=n(x0)) -be the area functionwhich corresponds to N.0 . Let pi , p2

be polygonal regions which have the same area, and let p1 , p2 , be

.

equivalent to normal rectangles n1 , n2 , nespectively. Let the lengths

of the sides of ni , n2 , (under Xo) be 1 , xi , and 1 -, x2 ,

/1

respectiveli 'Now we have fo(pl) = fo(p2) . Hence,

4Y xl '= f0(ni)
f0(Pf) = '1'02) = i'0(n2) X.2

Helve:the rectangular regions n1 , n"are congruent, and therefore they

/ .

are e u1V-6.Ient. Atinowfollows, from the transitivity of equivalence, that

pi - n, n, -,p2 , which complete% the.Proof of Bolyai's Theorem.
i
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Remarks:

. .

1. If you review the proof of the existence of -area functions for polygonal

regions, youswill probably agree that the most avloward part was Theo-
5

rem 3 -5.7, triangulation a

triangular region 6, Z xixl was independeftt of the triangulation.

The development used in Bolyai7s Theorem,might suggest to you that we
. .

could by-Pass this proof by showing that AP-1 and AP -2 imply that

equivalent regions must have the same "area", showl.ng that every poly-
.

gona',I, region is equivalent to a normal rectangular region, and then

using the area theory for rectangular regions to define area functions '

i

for P ., This can be doge, but, in order t9 get area functions for P

we must show that equivalent polygonal regions are equivalent, to a

),Inique pormal rectangular regiont(in effect, that equivalent normal

rectangular regions are congruent) and the proof of this is, essentially,

Theorem 3-5.7. We-cannOt use Bolyai's\Iffneorem to prove that equivalent

normal rectangular r,egionsare congruent: Bolyails Theorem requires

the exlser-71-6Zof,area funttlons for polygonal regions, and hence this-

theoreth cannot be, used to establish the existence.

2. We can use norMaLreCtangular regions to','reinforce earlier comment

' , concerning the arbitrariness inthene:Ming of area functions-by using,

the'length fUnctions to which they correspond under the 1-1 Correspondence

n . Let ao be a fixed segment,'as in the proof of Bolyails Theorem,
. ,

-and let x be any length function. or a-pblygonal region ,-we

'have seen that there'is a unique (up t9 congruence) normal rectangular

region n , such that' .n p . One hide of n is congruent to ao ;

let a- be the other slue of n,. Then we may define a function.

si P -4 R+

by

1'1

.
A %, (p) = x(a)

, It is easy to -prove directly that 4 satisfies AP-1:4and AP-2, so
1

:-. .
.1

. .

that gx is:an area function for ? .. nub there is an area function

, . f-: P -' R , with. f.= If. If is the inch fUnctiori, it might 4. ,

be 'reasonable.to'call' gx the "do7ineh"function.,



v.

Clearly each length function X determines a unique area function aox

and (for fixed a

-,

()

.6.

) we have a 1-1 correspondence k.4--; g?,. of length bine-

tions, k , and 'area functions, g, . Moreover if f0 is ,any area function,

..\ ,

hen- f0 corresponds under q to a length function A
0

, such that
. .

f0(p) = 0(a0 ) 0(a)

Hence if % ?,the length function ?. = X4aro)oko, we

il

ave g,(p) = k(a)
, -=.

f=
?`0(a0)

%0(a) = f0(p) . That is, the set (g... ) of unctions (derived*: .

from the set A of all length_fundtions) is the set of all area functions.
. ,

. .

In other words, the correspondence \ <---? gx is_a 1-1 correspondence of .
.

length and area funcAlns. Thiscorresponlienc; depends, .of course, on

a
0

!, and it is uniquely determined by the congruence class of ao . Thus --,

we get one such correspondence for each congruence class of segments.. For

a fixed segment a , it will be convenient to denote the corresponding,1-1
-..., m I 7.

correspondence by '

-
.-s-

6 ,no

,

where 6 denotes the set of all area functions for polygonal regions.

We have introduced this alternate procedure', for tlie,"nami4 of area

functions in terms of related length functions,' in order -to show you the '

degree Of arbitrariness in this !!naming", and the, fact that our usual,pro-

-.cedure is not forced on us in any sense: the usual procedure just happens

to be by far the most convenient. The fact that thetsual"proceture involves

a convention is important in the understanding of the question of "dimension"'

*elation to measure functions. We shall return to this question again

during the discussion of "dimension",.but meanwhild you should notg that,
z

for area 'functions "named" by the Correspondences n the usual chknge of

Units/change of scale "formulas" do not apply. For example, ff for any

\

' ;fixed a
/

it
a-in

denotes the a-inch afea function,'Iand fa-ft denotes ' i.'

7'.

the a-foot function,,you should verify that fa_,_ 12f
a-

In the.lftfain
-

everyday ?Language of "units", this would be expAssed as: ,12 a:inches =.

' 1 a-foot.

6ell 288
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P.

V B. To avoid contusion, we adopt the usuOl'ROnVention that whenever wee:"

refer ithOut qualification, to "the length function which corresponds to

a giv n area function", or "the area function which is determined by'a given

len h functio4 we are referring to the correspondence n . When we want

to efer to any other-eorresptndence (such as one of the ria correspondences)

we shall do so explicitly. In general, if xi and x2 (= %Xi) are two

37ength functions; and if fi,,f.2. are,thpsprrespondingarea functions

/

Alinder n
a

; (i.e.., f
1

= n (x
1 '

) f
2

= n
a
-0,.

2
)) ..then f

2
= kf

1
The

'following commutative diagrams incicate the relationship between theatito-

morphisms 17 of the sets A (length functions) and C. (area funditions)

which are determined by composition with the similarity transformatZons
0

1
0 ...:.. - .i?kf ll4. n, and the correspondences r1 n

a
.

c

.

A
.."t

k
A
4

k2
tr
0

A

A k
110.40.

A

ria

7,
°

e e

a°
If you like to.s'e7thiS sort of relationship expressed by a 'forMdia" .

=2 =
thep.the above diagrams yield:, = k n naK =,gn_.-; where R

2
I are

ce,

the functions indicated by the diagrams.
.0

In eaA of the pets of functions A , in addition to the scalar*

-, multiplication by positive constants k (which determines the automog
t

t
phisms ) we have an operation of addition, and.the 'sets are closed under.

. -1

this operation. It is natural to ask how the functions..n a , behave .*.

with respect to this addition.° This question, which is onlyofrsecondary

=interest, is answered in the following, exercises.
,
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Exercises 3:2

1. If r is a recta,ngrial.a 'region. with adjacent edges

,?.1 )2 , are two 1-en h' funAloas, prove that

(i) .
%1.(°) %2(a".r=?`1(cin) :%2(a1)

II t. , and if

the functIone;p12 r )N.3:(crt) "k2(a".) is an area function

for the set Pr of rectangutar regions;

(iii) the function f
11

r
1
(at),.

1
(a") is the area function

1
(.1) wbich corrstsponds (under ) to N.; ;

4

(iv) Ik1K2 is a length function, and ) =.f, ; (cf.,7:'

(v)

11.c.ireA.s-11,16);

11(?'i %2) fll 21'12 f22

2q1/57"; )

ria(),..1 + ),.2)?-..ric,()1) +:icr(),.2) , and

from ( k,, + ) to (.6 + ) .

4

. )\

:
Tiicy is an isomorphism,'

v.. ,

4, 2: (I) If f are area functions for rectangular regions, '
].

, f4?;i ) ....- - .
with "Units", respectively, (the. regions s... 81 , s2 ' 1 ; 82.i e

are assumed disjoint), show that the area function for which

( t i )

"
1.

_u s
2

If f f fn

iS
° fl f

2
f + f22

are area functions with- "units"

s2 , ... 5 , then `
v. .

- (
3 ' (a) the fi are in arithmetl,c progression-if and.only if

3
. -1-- ' . .

R . the :..si -- app.,-intharmonj.c progression;.
. -,..1

(b) the fi ar in'.harlAinic_progression if end onlk if tile
..i.... ,... ...

. .
.. s are in arithmetic progression...

'

4

(Refer -q) Exercises' 24, $os. 8; 9, 10, 11, and the remaris thicii
,foliows: the def'ini'tions arithmetic and harrnonicprogresbion

P ')
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.4

area units and functionsare similar-to those for length'fpctions,

results slh as these %hoad forany class of 4similar.ity-Alated,measure

functions- -i.e., for any ratio scale--whose functions all have uWs.)

3. Let *A
A

and A
6

.denote' the groupslunder composition)' of altomorphisms

of A and El . Prove that

\..
,,

-
di

0
=' ,'

' = 0 : kV. ),1c?. , kE R-F)

_
?

. , '

' - 4. 4:4

/

ang.similarly for 'RA.; and t.11mt, k,ko = kik2 . Hence *showthat the
.,. a.

' i
.

. ,

.cor11espondencel k 4k.K tis an isomorphism cf (R f, ) and each of the/

.1-

,,

' automorphism grpups (AA , o) (A6.0) , where o denotes compoption.

of automorphisInt. 4(St,xictly speaking, i'le should not' use "S to denote= ...,
..

r .
. an element of AA and also to denote an element of AL., but.this 4

I

.., minof ambiguityt is easily resolved f1otn the
.

contex)
-714

4 .4, Nf.'} Define' 11* : AA 4' AA by r)* (k) = where e Ki(11(1.))

(b.i it)/

'4

1"10(1,.)) . Show that 11* : K. --> k2 , Sndthat -;1* is an

isomorphism of AZ Onto AA ; - -

,
4 . i ..

h-

Similarly define Trx-IA --> A shot that ryx-.:R K,
a A 6

,
a .-.

and that re(!i ,is an isomorphism of AA4 onto .AA .'
..

Remark on Exercise 4: We shall refer to these results in tAtne4chapter,
.

t

but meanwhile you should observe that T. '(and, Similarly, defined
a a

so_as to make the following diagram commutative:

..

1.41' -,

That if f

A

so'that ri*(K)-- = 1511-1

Ti

1.

st. A

. .
. I

.41*-----0.10.

rl (k)

tr(R))(f) = 1K(

,

291 9

a

.

I

4



°"--77;
AV

.t.

Area and Language. 'We concl cle the elementary (or geometric) study of
IC 4

area funW,ons by pointing oft. he relationship letween our treatment, Egio-
,

some of theRways in which questions of areaare dpscribed in everyday language.
,

This situation fOy area is very much as it was for length.

- First of s.11, we remind you that we do not have a definition of thp

,separae word "area". We have defined area function", and we can easily
A,.

define exactly what we mean by such eicpresions, as "the area of A is larger
..o

than the area "of B "; or "X 'and Y have the same area". The utter

expression, for example, iseq/ivitlent to saying that X and ,Y belong to

the doMaifi Of some aa'ea function and the value o' the function on X is

tile game as its Valulkdr You should observe that this, and inequhlity
.

statements concerning "area", do not depend on a particular choice of area

ction. are "unit-free",siatements.) ,

. .

When we ha/e fixed on a particular,rea functions and it is clearly

understOod that we are referring tlo values jith respactto this function,

it j,s quite satisfactory to use an expredsionsuch as "the.area of A is

7 ". In manzr situations in mathematics we wish to work with a fixed area

function. For example, in calculus'we almost always work with the area

function which corresponds (under 1 ) to the length function which is

-'4 compatible with an assume d coordinataLstrUcture. Neither the length

function nor the corresponding area function are normally named. SOmetimes

an attempt is made to indieate.the4(usually unstated) conventions by referring

6

f 0
I '14,C4A1

'to length and area valuet as so manye.:-"unitt. ,-and it is understood, that the

h 1.1.113.tS fo2. length And area "correspond", under the correspondence which is
./

dualv to 1 . That is,.the unit.of area is (represented'by) the square

region whose side represents theunit of length; and a statement such as

"the area is q Units" can be interpreted_ip terms Of the scalar multiplies-

tion of domain classes by positive real numbers. As in the case of "length",

such a multiplication can be defined for all positive real numbers whenever,"

we have a ratio scale whose functions are onto x ; and fo* suitable real

numbers when the functions ate not onto.

In some books you will_find,a distinction made between the area of A H

and "the Measure of the area'of A with respect to a particular area func-
.

.tion". When this is done, the'expression "the area bf A " is really a

statement about the domain of (all) area functions, and it can be interpreted

to mean the set bf all domain elements with the same "area'; (i.e., same value

under -every area function),es Ad. 'That is, the area of A " is the equiva-

lence class to which A belongs under the equivalence relation which

2,96
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, __
corresponds to "same area". The measure, of the area-of A_un'der a particular

area functiOn, f is then the number f(A) . This distinction is upually

dropped in everyday'language when. we use such expression's as "the area of

is 7 square inches ".

In Exercise'3-5.1 above, and irl other places, we have-deliberately

adopted a,notation which differs from the .everyday convention._ In everyday

usage, if "foot" is a length unit,-and we adopt the same naTr'for the corn

responding length function, then "(ft) is used (with or.withoit paren-

theses).for,the area function which Fe have called ri (ft) . (It is also

usedto denote the unitof that functiori.)' If we were to adopt this.nota-

tional convention, then for each length function .. , wei-honld-use 0 to
denote,the corxesponding"area function 16) . Similarly the-area function

a

which We called f12 ,(Exercise 3-5.1 (ii)) would be clenched by Xl),.2-

y -.4Jet,US See what'tota ottAie results,proved (or given, as exercites)
,

above would look like in this notation: 'k,

(i) The result i(kA) = 01,. becomes
,

(k),.)2 = k2;,.2 . ,

(ii) The result (Exercise 3-5.1 (iv)) 11(1/-) f12 i becomes

9 ( )177 )2 =
-

1 2 1 2 10 ,
. -

%

(iii) The result (Eercise 3-5.1 (v)) 11(%1 %2)= fit
2f12

122

becomeg:1

4
+ )s. )s.

2
+-.2% )s. + 4

1 2
)

1 1 2 2

The'S&-results are part of the justification for the way in which

scientists manipulate the symbol's which name functions (or units) as thete

. symbols were themselves amenable to .the laws of
)

algebra. We.have avoided"t,,
using these highly suggestive notations, because it is easier tp ee what is

involved in, and to prove, the relations,expressed in (i) - above,, if We

avoid a too-sugge2tive notation.
4 -

Another reason by avoiding the notation "%2" for thel;a-fUnction

11(. ) , is that
2

has a different and well-established mea. Lin the

2
algebra of real-valued functions: k- denotes the function whose domain is 4'

.293
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e \ .
4

,
.

the same as that of x 34-and whose values are .he.squares of corresponding

_ ,"values of % . (E.g., consider the functions .e : x -4 sin X , and .

. ?: *
'..

-4 sin2 x .) r

-

- A. 4Milar situation is'reflected in ,the usual way in which one keeps

tack of functions add units ih the everyday application of measurement
0

. "formulas" For example, if r is a rectangle
,
with sides of length 1,-

e -Aches'and 4 inches , we often find the area Calculation written as area

of r = 3 in. X 4 in: = 12 in2 . The validity of this rests, of course,
. 4% # I
oh the basic theorem !concerning area for:rectangles: if a

1
3 a- are

, . 2 /- ,

adjacent sides of r , then we have %
in

(a ) =j5--
/
x (c;

2
) = 4 4 and

1 in(c2)

f 2(r) = 3 4 = 12 , where f '2 = T(x..) . If we drop the v and
in in

the f , Tie have

9 in.(ar ) .= 3,; in.(o2) = 4 , ,

2
ini(r) = 12

This is 'Usually written
if
as: length of 01-= 3 in. ,lei)igth of a'.2 = ,

'area. of r = 3 in x%4 in = 12 n
2

; which often gets abbreviated to

or even

i111= 3 in La
2

= 4 in ; Ar = 12 in2

-

\-.

= 3 in a_.= 4 in , r = 12 ip
2

1

From a mathematical point of view, no significance, is ye attached td the

symbol "1112 " except as the, name of the particular area function which

corresponds to the length function "in" under the defined correspondence

1-1 ; and the-justification for the common abbrevicationt and symbol man'ipula-
/

tions is that, when interpreted.in this way, they correspond to valid

results. In Ether words, we may regard them as a kind of shorthand .notation

for keepingtrack of functions (or units) andof the relationships between

functions. [Later-od we shall

terms.of certain operations by

constructed as "powers" and "t

be able to ogive another interpretation, in

means of which new 'ratio scalesmay be

ensor products' of existing scales:]

For mnemonic. purposes, we have such fotmulas as
-

A = i b. ; A_-= 2-b
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,
; .

for the "areas" of re'tangular and triangular regions. In these formulas no

partiCular area of 1 ngth.functions are usually mentioned, but it is under-

stood that i b
,
, h A , are numbers derived from any length function

.
and tie related aria function 11(%) .

1

So far we ha e only defined area functions for polygonal regions. We

shall need to e end the, notion of area,to a considerably larger domain.

This is discuss -d in Section 3-6. Itwill turn out that the extended funs=

tions will 'be n 1-1 correspondence with those we have already defined, so -

we can use.t same conventions in naming them. Moreover the relationships

(discussed ;.ove of/areafunctions to one another, and between length And

area funct'onsx will sti21 told, as will the validity of the common language
0

and. symbo, conventions.

the
'

ension of The -Domain For Area. FUnctions

Sections 2-8 and 2-9 we discuSsed in some detailatheway in which

omain lof length- functions could'be extended beyond the elementary

n of.segments. The theory of area is capable of a similar treatment,
.e

: to give a theory of arta-for (some) plane sets which are not polygonal

r gions, and for (some) nonplane sets; (e.g., subsets of so-called "curved

urfaces"). Having given the flavor of this kind of extensitm problem for

length gun4tions, we do not intend to carry out the correspOnding-treatment

for area in anything bike the same detail. ,

Our treatment of area. for polygonal regions doe' not even apply to such

"simple" regions as circular regions (i:e.1 the union of a circle aid its

interior) or most of theregions "under the graphs of continuous functions",

which we dhcounter in elementary integral calculus: We thkrefore wish to

extend the dam4Lof area functions to a larger class of subsdts of the lopne)

vend, in the extension, we would like'to preserve ableast some of the more

. itportant properties of area functions as defined for polygonal regions., As
bY

a result of our experience with linear measure, we do not approdeh the area

/extension problem with quite such a naive outlook. In particular, we are

quite prepared to.accept that some nonempV sets ark likeii-to have zero

"area measure", and tiiat some sits are likely to be in_Ame sense,

.

"un-.r

-

measurable"

If 'A , B , C., . . . denote subsets of'thp._plane, properties of a
, -It

-, 7
keralized area function u (on a domain D of plane sets). which we

might regard as essential, are

292 9
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Al. p(A) > 0 for every set ,A in the domain.

'

A3. (Congruence Property). If A ".4%Th, then p(A) ='p(B) .

4.4.s(Additivity). If An B=0, then p(A\U 'B) = p(A) + 11(13).
.

)

A5. (Monotoniciti) If A C B then [1(A) < 4(B) .,

A6.
\
D contains 15 (the set of all polygonal regions); and, if A is a

a polygonal region; then p(A) = f(A) , for some area fUnction f which

depends only on and not on A . (I,e., every measure function

p is an extension of some area function f for polygonal regions.)

A7. The correspondence 4 H f (of A6.). 'is 1-1.

kB. If tp. ,is a,suitable measure fUnction)(then'so is kp ; and if 4 f )

'then kp <-4 kf

I.
u -

-We'might go further than this and deMand that similar sets (in the

geometric sense) should havesuitably-related measures; that the.domain D

should have a suitable structure (e.g., a Boolean ring)'etc. The *question

we must then pswer; is whether or not there are significant domains D on

which such measure functions exist. There certainly are: if we trivially

extent the domain of polygonal regions to inc...lude the empty set (with measure

zero) then allof the properties Al - A8 are Satisfied. Moreover, iiith the _

definition which we have adopted for, area functions on the domain P of poly-

gonal regions; such an area function is finitely additiqe for unions of regions

whose boundaries mayhave a non-null interseAion. This suggestaimmediately

thp.t we might be 'able to include such "degenerhte" region's as pointsind line .

a",segments ( and finite unions of such reglons) in
t

our domain arm give these

regions measure zero. The next step woilld be to include at sets as the
floe

interiors of triangles, and finite "digjoint unions" of such sets. But this

sort of haphIszardapproach does not ile)ad'easily to a satisfactory genelial

theory. To get Tach a theory, we neg. to take a more general approach, apqh,
, .

as that which we used for the definition of Lebesele.measure forsubsets of

the line. In adopting such,an approa.chi we are,-however, dofing little Mote'.

than reporting the end'result of a process which undoubtedly invOlved a con-
,

diderable'amount of "tilal and error" in its developtental,stages.

It is possible to develop Lebecue meabure theOry for subsets of the

:leneJo
.

,

.

for subsets of space;-'and,-more generallyl.for subsets of real

euclidean spaces of any finite dimension;.and this canobe done with very
S. ,

' little more work than thatinvolved in the development of Lebebgue measure,
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theory for subsets of the line, if appropriate definitions are adopted-for.

such terms as-"open set" -and "ihterval" -in-t-he-euclidean. space of the rele-
.

vent dimension. But it is more instructive to deal first with the simpler

(and less general,) theory of Jordan Measure (first developed in l8?2). which

was extended by Bore; and Lebesgue about ten years later. The Jordan theory

givep us a domain'Whioh includes circular region;, and.the regions "under"

,the tit:phi of continuous functions, and it is therefore a satisfactory theqry
,

for the development of the (Riemann) definite integral in elementdcy 'calculus.

:
The' Jordan Measure of Plane Sets. The idea involved in Jordan measure

(which is sometimes called Jordan content) is to approximate a given subset

of the plane by'pelyonal rgion in two ways: we take inner (or,lower) approxi-
,

X -

mations by polygonal regions p* whicare contained in X ; andlitjOke outer

(or upper) al.Pproxiiiiations by polygonal regions 15* 1./hiCh c'bnteln''X . For

.g4Jced area function f for P , we define u*(X).= sup(f(p*)) , (provided
, .

thgt this-least upper bound exists) and we define p. *(X) = inf(f(p*)) . If

thereas no polygonal region-contained in X , then we define, u*(X) = 0 .

(Actually we can consider values in an "extended" number system, so that the

least upper bound will always exist.) The number 4*(X) is called the

interior Jordan measure of X ; and p.*(X) is the exterior Jordan measure of
,

X . If k(X) =, 0(X) ,, we say that X is measurable in the sense of Jordan,

or Jordan measurable. In this Case the common value .1(X) = p.*(X) = u*(X) is

called the Jordan measure (or content) of )C . We point but se1eral things:

(i). e use 'of the definite arts ]c
1 '

e in the expression "the Jordan
. -

. measure'
,

is :standard usage. Mut.thisl:function
,

, ,
. ...

course,,On f , and p. is the Jordan measure which corresponds

dependS, of ,

to f .

This idea of inner and Suter

goes backto:the Greeks, and

(bypiausifole'arinrttentS)Ae

simple nonpolygonal regions..

applo;amationstr polygonal regions,

it Was used by them to determine

areas of griliiar:regions and other

(iii) The'idea that a generdlized'area, or measure, (if it exia
should lebetween each Amer and each outer approximation is,

of courser , very natural. From a'formal point of view, it is

a consequence Of the monotonocity property and of the desire

2
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that the,generalized measure function III should be the same'

as the area fiction f on_the domain of polygonal regions,

that, ifflp; c X c p0f , then f(p0- = p(p*) <1.1,(X) < p(*)Jf('lp*) . Thus if X. is,to halie auch a generalized area
_

measure, and if sup(f(N)) .imff(fce)) thenthis common!
.

value is theoniy pOssible value foi. 11002. If sup(f(p)d)

/ inf(f(e)1 , the,question of whether or:not it is pcifsi

'tdassign (in some "reasonable" way) a generalized area

Measure to X , is, still left open.

The defthition of Jordan" measure need not' involve the use of »

polygonal reams; it.vAny given terms of simpler geo-

metric regionscsuch ectangular regions, or triangular

regions. Uleither of thee apprdeehed then we rite
*

finite unions in the,formation of outer.approximatiOns, and

:,finite unions of pairwise'dispint regions in the formation-
.

,-,cf inner approximations. The resulting theory will be

'exactly thtItSame under each of these piproaches. I.e., the

seip measurables0s--viLl be the same: and `'the measure

. func n determined by a given f'(an areaefunction or .

ectangular or triangular regions) will be.the same,,as that-

obtained by first extending the arediuridbiOn to polygonal
I .

regions, and then building a Jordan measure functiof on-this

extended area function. Whatever the approach, theerdan

measure and the extended'area,functioris. agree on the set of
,
all polygonal regions. (W6 'do not intend to provk these

statements, but we ment*on,thembecauSe ydu will find-Jordan

measure,treated-in different,(Ibut equilireaent) 140s, in dif-

._ ierent bupk.apnprfUnCtiOnstheory.and integratior4 and
.. t

13epegWthe,appredaches-usingtriangular or rectangular regions
1 40'441' A A , ,

li

are clostr to the 'further generalizations of,Borel and
-.-A,

Le esgue.) ,:
=737..\,) 3-.1.--'073-: !,* I-- -''-;:t,. 311t ; , ,,, ,..

_-
,c ,./A--. 1.- - .. .

perties of Jordan Measure. ret ir lie the'iTordatrureasure function
. . or:,

which is determined, by the areafunction f- for polygonal-vegions. Then the0-- -
f ollpaing properties maybe-PrOved-i-.

- . 0 0 > 0
1CL

-
,,t .,

kr)'A . ,
;-

, 4
, fr 1,.. . ......, ...4.-...., ....- - :.. _ - ?,,,,,E:'-t... -1,--

,

"(a) Every polygonal region. p .is Jordan measurable1,444116) f(p) ;
.

, 1 e & ..... .40.07 ..., t

C
t

,_. is --t-4 ',W,

3 0.2r ',Ott NO If,., _..,,,,,_ ,.,-,.. ...,:......:,...,,,,,141.,
,Z

0-0 ".7

$ - -, -.0.0. W.,- -.---.04.
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(b ) (Monotonic ity).

a"):- if X is, the

If \-1pl p2 then 11,1)1, <µ(p2)

empty Aet, -a.- stirigle.point,'-or a segment,

and segments, then -is- Jorelan-4Reasurablepaa*union of points

p.(X) = 0 .

or a finite

( d ) (Congruence Property). If XI and X Vel,ong to D (the class of
. .

a1J. Jordan measurable rane sets) and

(Similariterty). If Xi:. and X2(e

X2 1- then µ(X1) = µ(X2),

are geometrically similar,

Jordan measurable, sets, with's' "similarity

. %distance's in X1 ars k times the corredPOnding

%. ;,
then P(X1) = k2).(X2)

(1.) (Finite Addltivity). If Xi E D , (i14 2, n)

factor:" k > 0 . (1.e., all

X
distances in X, ). '

when

D is a

(i)

r. n
j, , then *Xi c D , and p.(, U Xi) = E 11(Xi) .

3=1 i=1: 3=1

and x. n x. = 0

Boolean ring.; 1..e.,

if c D ...,n)_

(ii) if XI ,

/ -
c -D., then X,

(h) D, does not,dep d on the particular bi
. .

.

which n Was derived.

then U, X

1=1

X
2

E D and

ea: fiinCt lori

D ; and

Xi (1 x2 E D

f (for, P ) from

',.(1) If X E D and µ(X1 then p.(Xi 1.1

'0) If fl, and f2 kf are area functions for .1'

err
are-the correspon Ing_Jordan measure funottions feir D ,

(k) D includes all c rcula

4!°

then, 42 = k 1 .

,1

4fAAr_P.(X2)

k-sk.2-

regions and all circular sectors; the Jordan

measure of a circular 'r gion'of radius r (under a length- function. x).
is

-
rer

2
(under

4.4
function rak)).

(1) ?Let h(ii) and g(

on an,interval, ca

x , bi 1,!-t

by X = ((x
o

y)i.:

/ measurable* and-, a
'7,

-

O

e mea ure i'unctiori t,, which is derived from the area

) be

I)

X 'b
r

a

=

'

two continu

(a, < , with h(x) <,..g(x) for all
)

the 'subsei: of the. cartekian plane defined

<'b; h(%) < y < g(x)) Then X is Jordan

4
".

real valued functions defined

a

(g(x) - h(x)]dx

.' 299 it
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where µ is determined by the area function f = TA) , and T. is .

the length function which is compatible with the coordinate Pundtion

for the given plane. The integral on the right is the so-called definite

integral of Riemann, the standard definite integral of elementary cal-

culus.

The proofs of most of these properties are quite straightforward. Man'

of them can be found (along with. a much more detailed treatment than ,we have

given) in Chapters 21, 22, of [14]: For others see [19].
i

SetNZ.ch Are Not.Jordan Measurable: Lebesgue Measure. The theory of

..Jordan measure which we outlined above' for plane sets, has exact analogues

for subsets of the line, and for subsets of higher dimensional euclidean

spaces. In our treatment of linear measure we did not discuss the Jordan

theoryrbecause it does net take us very far beyond sets which are merely

finite"unions of segments. [In case you wish to look at the theory,of Jordan

measure'on the line) the outer Measure of'a set is defined as for area, in

terms'of the greatest lower bdUnd of, the sum of the lengths of those finite.
.

unions of intervals wAich contain the set, ,and the, inner measure is defined

in terms of the least upper bound of the sum of the lengths, of thOse.11nite

unions of,pairwise disjoint intervals'which are contained in theet.]

Jordan measure has serious -technical deficiencies, which result,

essentially, from the restriction to finite unions in its definition. For

example, you can easily show'that the set S. of rational points on the

..,interval [0,1] is not measurable in the sense of Jordan linear Measure:

o04,Llt is not hard to see that S- ntains no interval of real numbers., so
4

,,, thatits interior measure,is zero; and that every finite union o' intervals

',..

which'contains.S alsb%, btains the whole iliter4ak. [4,1] , so that the

t

0 1_ 4.. - 3

exterior measure S is 1 .1 Similarly, the set dof 13oint?, (k,y)
)

.

lia-id:le unit square [0,1] x [0,1] of the cartesian plane., such that
If

x and y are each rational (we call this the set of rational points in the

unit nuara,Phs-not measurable in the sense of Jordan area measure.
, ,:,.,

. , i_'',..y.',-*4;,... ' ' .

,

If f(x) is a bouqded,,nonnegative, real valued function defined on
, _ .

an interval -[scib] 7", "and, `cif 't$'.denotes the set S = ((x,"' y) : x 'e [a,b] , i
...

0 < y < f(x)) 6o"(the so-called i.dinate-set" of f; dr "the regifon under
.

t ,
the.graph,of.e)- then it can be shown that f is:Riemann-integrable on

[a)b] if and only if S is Jordan measurable, and (provided that we use

the ...natural" Jordan measure function which is related to the-CoOrdinate

U4
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structure of the plane)
r

f(x)dx =At (S) .

. :..
...1,

The set of rational points on a lin interval is Jordan measurable as a
I.

. ......

plane set, and its Jordan hares," is zero. .{You may proyethis by considering

a'sequence of rectangular regions r ( respective widths 1 , and each .

with the iaMe'length as the given interval each of which cantainsthe inter-

.] However,the set of rational points,in'the unit square (Which is a

countable union of sets, each of which is-congruentto.the set of rational

4-pbints on a unit interval) is not Jordan measurable. -This is the character-

istic defeat of Jordan measure: that countable unions of Jordan measurable

sets need not be Jordan measurable, even when the union is bounded. This -L./

°defect has an exact counterpart for Riemann integration:, the limit of a

sequence of Riemann-integrable functions (degined onithe same interval) -need

not be Riemann integrable, even when, the limit function is bounded.

These deficienCies are removed by the more general theories of Lebesgue_ '/

measure and Lebesgue integration. The theory of Lebesgue measure for plane'

c ancan be developed almost exactly as for linear Lebesgue measure,,but we

Shall not develop it' here. As far as,the Lebesgue outer measure of a set ,S

is concerned, the essential difference, from the Jordan outer.measure is that

we take the greatest lower bound of the set of "sums of the areas of the

mintervals" in those countableInat )11st finiteYunions of "intervals ",

such that the union contains S . It is easy to show from this that he

Lebesgue outer measure is always leSs than or equal 'to the Jordan outer

measure., Moreover, for afratiOnai(poliis in a unit square the

Lebesgue outer measure is easily shown to be zero. [The set is countable;

name all of the points of tIle,set in some order, x
1 i'x2 xn'

#44r
for each 8)-0 , "cover" they point' X with an "interma".(a rectangular

. '.4,
region) of area less than 6/2-

n
;'then the series of area values converges:

. .

I

"sum"to a which is less than e ; hence the greatest lover bound of all
. .

such "suns" is zero.] It follows that the set of all_rational points in the

unit square (which wa not', Jordan measurable) is Lebesgue , measurable, and

that its Lebesgue lea ure is zero.
1 '

Generally speaking, the Lebesgue measure has all of the desirable

properties of the Jordan measure, as well as the additiorial property (with
1, ..,

respect to countable unions) mentiolled above. In Particular, the two
. ,

I -''

.

i
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measures (derived, of course, from the same underlying area function for

rectangular regions) agree on every Jordan measurable set, so that Lebesgue

measure is a true generalization of Jordan measure. There are, of course,

plane sets which are not Lebesgue measurable, and these can be very compli-
v
cated. However -one such set can be easily described using a basic property

7 5,

of Lebesgue measure. This property is that if X is a subset of a line

(which we take as the xyaxid) and if f is the.so-called characteristic

function of X (the function which has value "1" on points of X j and

"0" elsewhere) then X is measurable in the sense of Lebesgue linear

measure, if and only if the ordinate set of f is measurable in the sense

of the Lebesgue "area" measure. Moreover (with the natural assumptions

concerning the correspondence of the underlying length and area functions)

the two measures agree. It follows that if X is the'non-Lebesgue-measurable

-subset of the line described in Section 2-9,.then the ordinate set of its

'Characteristic function is not Lebesgue-measurable as-a plane set.I

Surface Area. So 'far we only discussed the measurement of area for

subsets of a plane. This does not enable us to deal, with such simple

stnfaces (surface is a term which we shall not attempt to define) as bpheretv

circular cylindersAcones, surfhdes of revolution, etc.

In mathematics, as elsewhere, analog is a powerftil device for suggest=

ing ways of dealing with new situations, and sometimes '(as with Lebesgue

measure) we are able to adopt>Sialable definrtions so as to enlible us to

deal_ simultaneously with a whole classof analogous problems. When we come

to consider the notion of the area of a region on a surface which is not

necessarily plane, we might expect that our experience with the notion of

curve length would be of some help. Let us see how far this kind of thinking

can take us.

To begin with, we have to decide on at lehSt some,of thesproperties

which area functions for suitably defined surface regions should have:

Among these we would surely include the'"natural"croperties:

ki) ' The definition of- "surface region" should include plane

regions, and he area functions for surface regions shq5.1d

be extensions of those for p.ane regions.' .

-.4

'(ii) Congruent regions should have the Same area.

(iii) A suitable area function sfiould be finitely additive for dis-.

joint unions of regions.

3Q 3C2



Guided by our e erience wJlth space curves, we might deftne a simple

su ace to be a co:itiiuous image of sme suitably restricted plane region
-7

(such as a polygonal region) under &function which is 1-1 except possibly

on th boundary. This,definition would include such regions as polyhedral .

surfaces (see below), g'pherical surfaces, and cylindrical !surfaces. -[As we

have no given a defiriition of the essentially topological notion ofcon-

tinuity,
1.

ye cannot prove these statements, but iI,..is not hard to make them

plausible.] By a polyhedral surface we mean a surface which is -like a

polygonal region, except that we relax the condition that it be a Subset

of a plane. That is, we define a polyhedral surface to be a subset of

space which can be expressed as a finite union of triangular regions with"

pairwise disjoint interiors. Thus a polyhedral 'surface is "piecewise plane",
4

and the plane pieces are polygonal regions. (Cf. the notion of` broken seg-
,

ti >
meet.) Thus, for some "triangulation", a polyhedral surface is piecewise

congruent.to a finite set of disjoint triangular regions on a plane (such
.

.

a set is a polygonal region), and the combination of these congruences

gives a continuous function which is 1-1 except possibly on boundary' pints.

To envisage a.Sggerical surface as such a continuous image ofd a poly-

gonalregion, first the surface of a cube (this if easily shown to be a

polyhedral surface) which'is concentric with, and contained in th'e sphere,

and then "project" points of"the cube surface onto the sphere by "projection"4

,from 'the center; this "projection" is a 1-1 continuous function on the cube

surface, and'the composite of the "cube function" with this projection is the

desiredfUnction. Similar procedures can be used t2' show that circular
. ,

cylinders, cones, and other simple surfaces.would be included in such a
T1

definitio&of simple surface, but of course such a de inition also gives.
. S- - r

many surfaces which,are certainly not "simple" in the everyday sense!

Our next step is to consider how to define suitab e area functions for

. such surfaces. For polyhedral surfaces (as for broken egments), there is

really no chpice: given any area function for polygonal regions, its exten-
,

sion to polyhedral surfaces must be;such that it is additivewith respect to,

theareas of the triangular regions_in an,yIriangUlation, And the proof of

single-valuedneas of this definition (i.e., indelwdence of triangulation)

is essentially the same as that for polygonal regions.
P

After pOlyhedral surfaces, the next class of surface regions which /e

might consider are those which are called "developable". To make this idea

precise we would_nee-d-some concepts from differential'geoMetry, but the

intuitive idea is simple enough. Intuitivel4 sgiMple_develoPable surface .

I '14
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is one Which can be "flattened out" to a plane. surface without tearing or

stretching (i.e., without changing,what we intuitively think of as the sur-
1,

face area) and a developable surface a,fintte union of such simple devel-
.

' opabie Surfaces,with (at most) bou6arY points of intersection. Simple

and well-known eitaMples are, the curved_surface of a cylinder; (to see this,

Tilt on a line parallel to the axiA,'And "Unroll"); the.curved surface of a

cone; (to see thls-cut on e linethrough_the vertex). We4are not likely to

be satisfied with any definition of area.function for Surface regions, which

does not give the ."expected values" for developable surfaces. For example,

consider a, right circular cylinder of height° h and base of radius r

(under a given length function ,With related area function n(k). f ).

We would expect that any reasonable extension oethe domain of f should

include cylindrical 'efaces, tnd that the extended function must have the

value' 2Arh on the curved surface of the cylinder.

As a next stape(motiveted by our treatment of cure- length for simple ,

curves, where we took st upper bound 01''the -ngths of approximating

broken segments) we,might t to define surfa area in terms of.approxi-

mating polyhedral surfaces. way to do this for a surface

S , given as a suitable c 2046anage (S ='g(p)) of a polygonal region

p , would be to use the t angiliatioa6 of -13 , That is, if (p , Is
4f

a triangulation- of p , , (15=1, n), and if f is

4
any area tiOnk`forpolygo r gions, we 'could consider the polyhedol

'n

region P = UALg(Ai)g(Bi)g(Ci) (whose vertices g(Ai) , g(p.11.) , g(ai) ,

iF1.
,

(i=1, 2.. ,n) all lie on S ) as a "polyhedral approximation" to S ; and
''' ' 7 '''' '.... I' -.7 A ' ' .. . n_,, . J., ..,..._t - ,....1. 1 i . 1 -: .1 4 j.,.. -1,--- i )-1 ,'?'.

1(we could consider the area
i

(B.)g C.)) as an approxima-
4 f=1

tion to the desired area value of f on S . We would then try to define

f(S) as the limit (in some sense; e.g., the supremuin) of the (f(P)) for

all triangulations of p . VaEortunately this apparently_natUral idea just
, _ ... .....,,

dbesn2I work, as we can Opw.yoU by mean's of a simple example.

The Failure of Polyhedral Approximation Methodein The Treatment or sui.-

face Area. For our example we consider the curved surface S of a right cir-

cular cylinder with radius a and height h , using some fixed length function
,

y and the related area function p(ri(N.) f) for polygonal regions. We shall

describe polyhedral approximations to S directly on the surface,,but it

is not difficult to express this surfaco as the image of as.uitabie function

,4
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defined on a plane polygonal region (e.g.,, the rectangular region with sides

of lengths 2,a and h , obtained by "W6ting and unrolling" the Curved

cylinder surface) and to show how the polyhedral approximation which we

describe, derives from a suitable triangulation of the plane,regio,n41,,,

Take n + 1 equally spaced parallel

and each parallel to thecircularibase of

in the congruent. 4rcles C"0 C1 ,

planes (at distances

the cy2THder) cutting

Cn - where CO Cn,
'

apart,

the surface .

are the

"ends" of the cylinder. On each of 'these circles C. take four equally-

spaced points (i.e., at the vertices of an inscribed square) Wi Xi Yi
.

Zi with the points on every second circle located "above" the mid-points

of the ares of the circle which is immediately bel'ow it. ('See diagram,

'plan view, showing tp,2 points on circles CO and C
1

.) Connect up these

Ir

p
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points as indicated on the diagram togive a polyhedral approximation P
(

_ iA i'

to $., consisting of the union of 8n congruent isosceles triangular lAr
.. . c,. .;

regions. (In the diagrams, the cylinder itself is:indicated by dotted lines, ,-
,. ,.-t

and, the accordian-like polyhedral approximation by full lines.) The set
,

of all such polyhedra regions, for all, positive integers n , is contained
.A

in the set of all polyhedral, approximations to S . Bence the least Upper 1

of

,bound (if it exists) of,the numbers 8nf(e,

n)
(where 6- denotes one of' ..,

.

the congruent triangular regions in the polyhedral

n

approximation Pn ) must
,..,.

be'less than or equal to'the corresponding least upper bound taken over all

polyhe4ral,approximations. But it is easy to see that the set of numbers
ft

(8nfc.5 n? ) is unbounded (see below for
.

detail). supOnf(sn)) does'' '

,,

not exist. It't 'Calms that the corresponding least upper b d over all

polyhedral app(:ximations cannot exist. But we have already agreed that'any.

ela:isOnable, extension of f must have the value 2nah 'on S . It P011ol4a'
-

that4.attem4,todefine the area 'of S (with respect to f) to be the

least upper bqunci of the areaall polyhedral approximationsis,quite

unworkable. ,

\ -... .

We still, have mrshow that the set oX nudi54m,. (8nf(6n )) is unbounded.
---

This can be done withoUt getting involved in adetailecLnotation. It P
6

.
i

be-the paint on tie circle Co which is,immecliately above l'1): (See
,

diagrams.) Then -64-triangular region ALZA)P6'ide2"Iiibjection" of



4Z6Y0Y1 . For every n , Z0Y0 is a common base foll'these triangles, and the

corresponding altitude of a
0
Y
0
P
0
'is the "projection" of the. corresponding

altitude of a
0
Y
0
Y
1

. ,Hence the area fliZ
0
Y
0 0
P-) < Y )-= f(e. n )

,

ahis'is true for every value of n , so that we have, for all n

f(E,n) > f(12.6Y0P0) = c (say) , where the positive number c does not depend

on n . It follows that the area f(P
n
) > 8nc . Hence, from the archimedean

property of the real numbers, ti}e set (f(Pn)) -is unbounded, and hence has

no least upper bound.

We-might analyze the above example in a ttempt to discover why the

"obvious" procedure fails! This analys4s m" it suggest that'we should have

restricted ourselves to polyhedral approximations with 'Small" triangular

regions,% and taken some sort of-limit as the "mesh" of such a triangulation

tends.to zero. By thig we mean that the "diameter" of each triangle (i.e.,
, ,

the length of the largest segment contained in the. triangle),should t?nd to

zero.. We could accomplish this by letting m..(insteaci of, 4) be the

number of equally- spaced pointS on each Circle Ci , and looking'for some

',.sort of limit as m ,n 00 . There are various `ways of.formu-;

lating such a limit notion, but unfortunately, although a t exists
,

for some formulations, the value of the limit depends on which fordblation
.....!*-:'I.

is used. (You might like 'to look at- our example_ with, m = n , and Consider

the limit as m -4' 00 ;.in this Ca heCase t'"correct4 value e for the area. is
. '

'obtained for the limit. The amount of trigonometry needed to show this is

. not veri.grek. If n is taken eqUal to m
2

, the gorresponding limit

as ra' -f. 00 also exists, but it has a value'which is greater than 21rah .)
_ .

. t"

. It is a fact that, with a More careful (and more definition_
.

,.,

of "surface" andmilkh suitable definitions of the'necessary limit concepts,

4,,r the "correct" value for the area 4 obtained'as the greatest lower bound of
\ I

---,--

t
,

set of such limit'S, but/this treatment involves some difficult and

subtle questions which go beyond the scope of this boOk. Perhaps the

'eeteritial source of the difficulties lies in thefact that, whereas the
.0-

interpolation of segments (in a broken.segment,approxlmation to a curve)

) involves approximatingIt'a curve by a pieCewise linear function which agrees

with, the curve fUhction on the boundaries of the small seg!ents, polyhedral

approximation does not similarly agree on the boundaries of'the small tri.-

angular,regiono, tut only on the vertices of these,regions,

3°7 3 1 A



In most treatments of surface area advanced calculus and differentiaf

gedmetry, the very real difficulties are overcome by adopting a much restricted

definition of surface and of surface area. (Rpughly speaking, these restric-

tions require-the surface to be "smooth" and to have a unique tangent plane, ,

at. `most" Points.) This restricted category,qg surfaces includes such simple

surfaces as polyhedral surfaces, developable surfaces, spheres, and many other- f

/ surfaces of revolution; and the area functions'agreel of course,. with the

earlier defined area functions for polyhedfal surfaces.

3-7. The Measurement of 'Volume

In its relationship to the measurement oflengtn, the measurement of

volume has muctrin common with the measurement of area. For this reason we

'shall not go throughthe some sort of details again, but we shall concentrate

instead on those,a,spActs of volume measurement which differ in some significant
,

way from the corresponding area situation. For a more detailed treatment

(especially concerning the volumes'of many simple solid regiAs) you are rer

(erred to the excellent chapter on volume in [14].

Tne Empirital Measurement of Volume. In the dismission of area measurement

we pointed out that there is no useful general method for the direci empirical

measurement ,of areas, and thal-mot areaasurement is carried out indirectly--I

us2.411y by the assumption of a mathematical model, and by calculation from

certain Nngth measurements. A great heal of volume measurement is also

F carried out indirectly, but there is an important direct procedure with a

wide range of applicability, for the empirical measurem ent of the volumes of

,both solids (by liquid displacement) and liquids. We assume that yOu a re

generally familiar with these ideas -awl we shall not,go into them in detail.,

AA usual with empiricl measures, a number of phYsi41 assumptions are made

concerning the "rigidity" of containers', the invariance of the volume of

liquids when transferred from place to plac, the volume invariance of,a

solid when immersed in a,liqUidipd the volume equivalence of such a solid

41* and the amount of liquid whidht "displaces" when fully immersed, and soon.-
From the point of view 'which we have adopted in this book) the first '

'oe -

requirements for the establishment of an (empirical') woken function Ire the

recognition of a category of domain elements which possess'"volume", and the

establishment of procedures forAWciding equivalence and ordering,With rep-

pect to volute. A notion o1' "combining""volumes must then be introduced, and

we look for volume functions, on the selected domain, which have positive e

1
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.

real number values, which preserve equivalence and order, and which are

"adaitive" in the sense that the 'value of the pnctipn on the "combination

of two domain elements is the sum of the values on the.separate elements. , .

We assume that the situation will bd very much, as it was for length measure-

mentj tnamefy, that tiie domain will be, in effect, an ordered abeliari

group; that there will be infinitely many suitable volume functions, all Of

which are, similar to one another; and that a particular function may be'

determined,..and named by the selection of a unit. (That iS, by ELsigningithe

value"." to .some arbitrarily selected equivalence class of domain elements.)r
There is no doubt that, even ifewehad-no prior ideas about length, a work-

.

able direct.m.ethod of volume measurement, with a significant domain, could

be established in this -way. In fact, as we remarked above, such procedures -.

are the basis for a great deal of practical volume measurement, with.the

additional feature that the names of the units/functionslare frequently

determined fly assuming p specific relationship of volume and length functions.

(Thus we hive a "tubit inch" function, Nhose "unit" is.a cube whose side has

a length of one i'nch.) The existence and properties of this 1-1 correspondence

of length and volume functions.are more easily discusse d iR a mathematical
,

(geometrical) context, but we want to show you by-means of an example'(which

we shall refer to later in coadectibn with the notion of dimension)'that

there are other ways of relating length and volume functions; and thatj

From an empirical standpoint, one of these arises quite'naturally.
.

Let us assumekhat we have established .(as suggested above) an

empirical procedure for the comparison of the volumes of certain solids, and

certain "quantities" of liquids, and that we wish to proceed to the final.

step of 43.!tua1 ly ftting up specific volume functions. Assume that we' have

available cylinders of constant cross section. (E.g./ right cylinders whose

normal -plane cross-sections are all congruent to a fixed plane region r

Assume also that we have a well-developed procedure for length measurement,'

that T. is a particular length function. ,For. each object d (in the

in of Objects to which our methods are apPlicafle) we "measure" its

volume ,by -immersing it ,in liquid in one of Our cylindrical containers, and

assigning to d the value v
r
(d) = x(AB) , where' AB is a segment repredeti

ing the difference in the original bnd the final level of the liquid in thee,
1

container. (See diagram.) Without going into details, it is fairly apparent

that v
r

will be a perfectly satisfactory volume function for the domainlpf

objects considered; will preserve the domain structure), Each
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er,

w.

length function

also.depend,.of

function
r

\.0

will determine a unique volume function vr which will
.1/4

course, on the cross-section region r . The resulting

x- v r from the set of all length functions to the set

of all volume functions will be a 1-1 correspondence, with the property that
L..,

v, r(k% ) = 20 (d,. ),. You will reCognize the similarity of this example tor -
.

A ''''''''-;,,efi,

the one which we used in Section 3-5 (motivated by the construction used...in"
6.

the proof of Bolyai'A Theorem) to show the fistence of essentially-different .

,

1-1 correspondences of.lendh and area functions,.leading to different iso- '

morphisms of the automorphisM groups of the sets of length furictions and area
.

fulActions.
- .

The Theory of Volume/For Rectangwlar Parallelepipeds. The theory of volume

for the domain D
r

of rectangular parallelepipeds can be carried through,'
.

(.in the 'context of euclidean geometry) in exactly the saieovaty, as,11W theory ',4
of, area for rectangular regions, except that it is, more difficult to draw

releant diagrams.. We shall state the main results and leave the details

. A volume function D
r

11+ is defined to be a function which

has the same value on congruent rectangular parallelepipeds, andwhiCh is

finitely additive with respect to rectangular parallelepipeds whi4fare

to' you.

.10



expressed as finite-unions of,rectanplar parallelepipeds with disjoint
I .

interiors. Let p be a fixed cubical region with edgescongruent to a?
0 7,

segment co , let .)..0 be the length function with unit ao; and let p be

a rectangular parallelepiped whose adjacent edges arethe se4ents al

Q3 . Then, if v is a volUMe function for Dr j (cf. Theorem 3-5.1;

the existence of such a function has, °of course, to be shown) it is easy to

prove that: . ° .

(1) v(p) = (%0(ci)l-b..0(a2)) No(c3)1 [v(150),..

(ii) There is a unique4olume function *0 for which :ro(po) = 1 .

. Guided by these 'results, we test the function vo defined by 1

vo : p
[%0(a1)] [%0(a2)] E%0(a3)1

, -

and we-may prove, as in Section 3-5, that

4,1 (iii) v
o

satisfies the congruence e.nd finite additiyIty

for Dtinfliv

require-

mentsj and hence is a volume ucon
.

Every volume function maps D
r

onto R+ 06 it also maps

the sub7domain D
c

of cubical regions onto R
+

Each two volume functions for D
r

are'similar, and the set

of all volume functions for D
r

is a'ratioescale.

ti

The correspoidence v vo determines a 1 -1 function

from'theset of all length functions onto the set, of all

volume functions.

(vii) , v(k), ) =,k3v(%) , for all k s 11+ , and all length functions ? .

) .
.

' I

w . - ,

N

,
The correspondence ,v ,isthe ane from which volume functions klre usually

N . N
named, as cubic inch (or.in3 ) , cubic centimeter kcm

3 ) etc.' The result
t\-

. (vii)
-,
indicates the well -known way in which this system of n chore is

, ..

.related to changes of "scale':, or "unit".
, . ...,

Valuie Fbnetions For Polyhedral Regions. We can give a definitod'of
I.

polyhedral region which is analogous to that for polygonal region (i.e., as

a finite union of tetrahedral regions with pairwis disjoint interiors) and

attempt to carry through a treatment of volume for polyhedral regions, which

311
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.;
1.. t.

.'Yi, . . .-....4= . .

is comparable to the elementary theory otarea runctona.--.4 volume, function
' ITI / N .

is defined to be one which has same valUeeKcongruent p,o4,ybesdral regions,

and which is additive with respect to-Valaite union of Legions with parr-
- , i

wise disjoint interiors. The nextstep is to attempt tol'derivecthe "for m"

of possible volume functions for polyhedral regions,-blehowing7the the
.

-,--1",.1 cis; .

.,
i 0

volume "formula" for a tetrahedron must'be - X area cif base X,-hei
. ..:x.

,, . 3
.., .

(using any length function x, ,, and the- related area and'-V6rUtnepn4tioris

1(.k) and v00). Very quickly we encounter a difficlUtYT -we 'dit,44 seem

. to be able to prove that the exrected, (and well-known) analogue of Theorem

3-5:6r (i.e., that tetrahedral regions withscongruent bases and congruent
,, . ,-.s.,

corresjoriding altitudes must-have the same volume) must follow frbm our
\

congruence and additivity assumptions., We can proye (without using' Cavalierils
i

Principle - see below) that every triangular prism is equivalent (in the
. .

sense of piecewise congruence under decomposition) to a right-triangular
.

_prism on its "normal section" as base and that this is equivalent to a right

rectangular prism (i.e., a rectangular parallelepiper)e °Hence (using the

naturally-related length, area, and voiZtLfOnc,tions) we can prove the volume
-. -

'.."formula" for a triangular -prism (area of,19,3p4X altitude). Moreover, given',
.

any tetrahedron, we can find a triangular
AN

prism with a decomposition into

three tetrahedra, one of which is the even,,op,e, and each-parr of which have

congruent bases and altitudes. but, we cannot0Rrove that tetrahedra with

congruent bases a.1.401:pitudes must have the-Same volume. The question as

to whether this.aould be proved (within the framework of Classical geometry)

as a consequence of our congruence and addappy assumptions for volume
4111,"

functions, was posed by Gauss, and solved (in the negative) by Dehn in

1902.,
. , S ,,'

The diculty represented by point's negative result is usually over-.

come, in elementary work, by an assumption which,is Aown as Cavalierits

Principle, Roughly stated,this principle asserts that,two solids have the
Mr

same volume if, for each.planeiarallel to some fixed plane, the two "cross-

sections" have thesame area. (Fbr,s. precise Statement of this principle,

see [lb].) Cavaliers was an, Italian mathematician of the early seventeenth

century, who attempted,t6 put on-a better mathematical basis the kind of

plausible "litit" arguments used by Pythagoras in :deriving the (correct)
=

lareaand volume ,formUlasformanY" simple regions., Ca4lieriyal, not

successful ,in this, and his so-callee"principle" was fib* proved until the

*AL later development of cat.culus and measure theory, in which; with suitable
0

) '"'definitions of the terms involved, it becomes a theorem.

? al (I
/
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Although we now kno (trot Dehnis Theorem) that any elementary attempt

tetrahedron isto prove the volume form a foi. a

not prevent us from "finding" t

Pythagoras and Cavalieri,

corresponding function.for noIyhe

tetrahedral decomposition of\a gi

obtained suitable diagrams) t\ pro

that the volume %ormula for tet

base) but it would be a formid ble t

dic.r

olum

e formula by the

n going back

bound to fail, this does

plausible.hethods of

to test:Whether or not the

regions has the same value for every

en region. It is not hard (after you have

e the' analogue of Theorem 3-5.5 (in effect',

* hedron does not depend on7the choice of

sk indeed to give a detailed proof of

shall certainly not attempt to do this,.

functions do exist for polyhedral

general theories of Jordan or Lebesgue,

are444asrable setts in either of

lume measure, and the more general

to similarly to the corresponding

the analogue of Theorem 3-5.7,

It is much easier to prove that

regions by first establishing the

and then proving that polyhed;al.,,r,

these theories: The theory
,

Jor

theory of Lebesgue, can be carried o

measure thebries for t th

We conclude this very brief discu of volume by remarking that the

'negative resu1 of Dehn is closely vela the question of a possible
. -

"3-dimensignalt equivalent of Bolyaits. It can be proved (but the
71

proof is q1.44 difficult) that here is no suc equivalent, and that poly-

hedral regions may have the same olume without being piecewise congruent

underfinite polyhedral decomposition. In fact it can be shown that there

are infinitely many equivalence classes of polyh (witti resp4 to the

equivalence relation of plecaise congruence und finite decomposition)

,which have the same volume.

-1
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Chapter I.

MASI:RUMAT AND 'DIMENSION .

4-1 Introduction

The word "dimension" is usedlin everyday life, as well as in'mathematics'

and science, in a variety of ways. For example, we have such everyday usages

as "the dimensions of this box are 3' feet, 2 feet, and 18 inches "; "the .
,

dimensions of this room are 20, feet by 12 feet"; "a draftsman dimensions-

his drawing"; "the.problem,of airport noise will take on added dimenstons.with

the introduction bf supersonic aircraft";

Inmathematics, wa,speak of the dimension of a euclidean space;:the

dimensiofi of a vector space; and the dimension of a topological space.' Each

of these three ideas (euclidean dimension, linear dimension, and topological,

dimension) has its own definition, and each is applicable to a certain set of

"objects". In other words, each "i's a function with its own well-defined

domain and each might reasonably be considered to be a measure function in the

broad sense. The values of these functions are integersior cardinal numbers,

and the definitions of the e functions are spoIrthat (unlike, for example,

length functionitand area. ,ctions) they are'unique.

In this chapter-we are going to discuss another usage1of the word

"dimension", which arises whenever we, have ratio scales (i.e., sets of

.similarity-related functions, such as length functionss'or,area functions)

and a certain type of relationship between such sets., Speaking rather in-
,.

formallFat this stage, the "dimens on" of one class of such Tunctions;with
_

respect tb aftother will be affUnc on of a specific relationship between the

A classes. Thus it will turn out that the dimension of the glass of area '

functions with respect td the class of length functions, under the "natural"

- correspondence defined in the last chapter, will be "2" ; whilefthe

dimension of the class of area unctions with respect to the class of len
W

functions under eac 'correspondence % , will be "1" . I

)., rt
Classes of similar functions with correspondences between them 'arise

typically in 'Measurement situations (especially in science but also; as we

have seen in a purely mathematical context, originally motivated byhatldat,

'logically dependent on, empirical ideas). Hdnce the notion of dimension which

we will diScuss here ismotivated by meadrement questions. There,is no simple

'
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Common name (such as topological dimension,' linear dimension) for this kind of

dimension notion (itself a measure function in the broad sense)..so we refer

to. it as measure dimension. There are connections between all of the common
. - .

didension notions, including measure dimension, but we dO not intend.to explore

these connections in thialbook.

You have undoubtedly encountered the notion of measure dimension in your

courses in mathematics

"area has dimensto

"velocity has dime

These, statements are o

and physics, in such expressions as r-

c. 4

2' with respect to length";

sion 1 in length and diMension -1 in time".
1

en expressed'SYMbolically by such notations as A = L
2

;

and V = LT
1

. You w 1 also, be familiar with the fact that "dimensional

relationships" of'this type can be quite complicated, and that there often

appears to be something mysterious about them: the nature of the symbols

A, L, T, V, ...,' is uSually left rather obscure, and yet they are often

manipulated as if they elong to some simple algebraic system, such as a

multiplicative group. xt ip one of the purposes of thisbook to make clear

just what is involved in the'notion of measure dimension, what is the dOmain

of arMeasure dimension

of this book, of such s

thel6asic mathematical.

function, and.,what is the equivalent, in the language

bolic statements as 11'= LT
-1

. As you-will see,

deas are relatively simple, but by no means trivial.

You mightbe surprised that we are, initiating the discussion of'measure

dimension when we have
I

four ratio scales "on hand"; namely, the scales

for length,,.angularity, lareavnd volume. The reason we are doing this is

. that most of the mathematically significant aspects of the notion of measure

dimension can be discudsad with thesesitple examples in mind, and that we

are unlikely to understand the more complicated situations if we cannot under-
,

.

'Stand the, simple- ones;` .

We must emphas?ze:-t t%our, discussion is almost enarely mathematical.

The length functions and th*,area functions thatwe refer'to will be those

wh we V.bve describes}; :5m: whose domains are subsets of euclidean spacp.

The properties, which we need in order tOdiscuss the notion of measure dimen-

sion ai'e'properties'whici we have proved or shall prove. Whether such tapper-

ties hold for the corresponding empirical functions,. (and,for the other empirical
,:

.
maapure functions,used.in science) is an empirical, and not a mathem9tical,...

I,.,..:.,.. .

question'. It_ds, of course a scientific hypothesis that "'such properties do
.. . 1

hold in those situations to which the mathematical treatment is relevant.
, . 1

1'
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Before getting involved in details,'there are a few points which should

g be made clear. Most books oa,measurement--in fact most books on,physics--deal

with the subject of dimension. But their objective is generally to achieve a

working familiarity with the notion, and no serious attempt is generally made

to develop:a mathematical theory. The "facts" are generally summarized, and

ny examples. Our objective is, in a sense, complementary

atmentias our principal concern is to explain the mathe-,

ehind tV "facts".

illustrated with
.

to this kind of tr

matics which lies

Among the many books and papers devoted to this. subject, Bridgmants

"Dimensional Analysis" [17], now over forty

and we commend ft to your att,tent±on. Other

larly useful as sources of applications are

years old, stands out as a classic,

books, which you will find particu-

'[3] and [18]. In addition there

is an extensive and still-growing literature on this question, (books, and

articles in scientific, philosophical, and occasionally mathematical,
A

journals) and it is safe to say that all problems;- mathematical, mpirical,

and philosophical--are by no means sOled.

4-2 Ratio Scales

BefoTe proceeding to a formal definition of measure dimension, let us

review the notion of that (following Stevens),ige have called a ratio scale.

In our discussion of length functions we found that (for the domain D of

segments) there were many (in fact infinitely many) length functions, each of

which was a function : D H>R
+

. (We assume henceforth the archimedean

and Canto4edekind postUlates, so that each is onto R
+

:) :) We proved

that if is any length 'function, and k E R
+

, then la. was also a leng th '

function. Moreover we proved that any length function could be obtained from

any other in this way. (I.e., by multiplication with any k , in terms of-

the multiplication in the algebra of functions; or equivalently, by couosi-

tion with the corresponding.automorphism_k : x -4kx of
+

+).)

We also noted earlier that if A denotes the set,of all length functions,

then, corresponding to each -k a R+ , the function

:/\_-,

defined by K(X) =**k)s. = k. is a 1-1 correspondence of onto_PL, and

lc has the properties that, for all k' e R , and all %). and .%2 E R.

(i) K + = K(xl) ± K (%2)';

(ii) k (lox) = x* MO)
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That is, k is tlh_autbmorphism of the R
+

- semimodule (A, + ,.R L. It is
+,

not diftIcult-t.0-wovdthat

(i) _(E-1,k 'E'11.4.)0 is the set of all_automorphisms of (A, + , ;

_ this-set of automorphisms - (which we denote by A.A. ) is a
.

s-

group& which is naturally.isomorphic, to the group of auto-

Inorphisms of (114. +) . AS we proved in Section 2-2, this

grOuV_of automorlalisms is isomorphic. to the group (114. , ) .

Hence the function 'PA : k .-ti7 is an isomorphism of the

+
groups 1(R , ) and (AA, o ) . '(Here the symbol "o"

notes co position of automorphisms.)

Whenever we have a set of ?Unctions (not necessarily arising in a specific,

measurement_situation)-with a common domain, which are related to one another

like length functions, we refer to such set as a ratio scale. Se'C'tf'ically, a

ratio scale is a_set- Mof functions, With Values in 11+ , such that

(i). _each function in M has .the same domain (it is sometAmes

convenient to call this the domain of the ratio scale11)1
r

(ii) composition of any function in M with a similarity tRns-
,

formation-°k of R (i.e., an automorphism of 014,-0)
_ .

_gives another function in M ; (equivalently, M is cloSed

--under multiplication by positive real numbers);
0

. (iii) every two functions in M are similar; (i.e., relatad by

composition With an automorRhism of (11-,+)).
+ ,

.

It follows that if D denotes the damain'of M , then

,(iv) if a
1

a- belong to D the ratio f(a1 )/f(a^) hasthe
.

same value for every f-E M elements al
'
a2 y

of D , have the sat

only if they have t

_ .

e value under onefunction in M if and

same value under every other function

in M . That is, the relation defined by: a 0. a2 if and

only if f(a1) = f(a?) is' an equivalence relation oh -D ,
. * *'*

and this relation is'the same for every f e M ;

if f'
1 ' 2 1 2

,

Same value for -every a E-D
, -9;4.
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(vi)

( v )

. (viii)

composition of functions in M with a-fixed automorphism of

(R+ , +) , yields an automorphism of (M , +) ;

the groups of automorphisms of (R +) and of (M +) are,

isomorphic, and each is naturally isomorphic to the -group

(R+ , ) ; this isomorphism can be used to 'give an ordering to
1

the automorphism group of the set of functions, M ;

every function f in M "generates" M , in the sense that,

for each .f 4M = (kf k ;

(ix) in addition to functional addition in M , there is a "scalar

multiplication" by any positive real ndtber, and (M , +
+)

is an A+ - semimbdule;

if 15 denotes the set of-equialence'classes of selements

of- D under the relation defined in (12,/1-aboverd:-"scalar

(x)

,

multiplication" of elements of 15 by some positive real num-

bers can be defined (as ill Section 2 -5'), and an "addition"'

can sometimes be'defilred-by-"Working backwards". (I.e.,

if f(a
1
) + f(a

2
) = f(a ) define al + a

2
=

3
.)' As far

as these operationsare defined, 15 has a structure Ilke an

R
+

semimodule. Moreover there is a natural 1-1 mapping
,

from 15 to the dual-spaceof (M + R +) .

If each func on in M k
is onto R

+
, we say that the ratio scale is

se it is incompletesc Most of the ratio scales that we have

mathematical context, are complete. The angular treasure scale

es is an example of an incomplete ratio scale. Some of the

cotpride; otherw

encountered in

for simplb an

theorems be ow concerning ratio scales, hold only when the'scale is complete.

AslyePointed out in connection with length,icales, it is easy to prove that
. .

a ratio scale is complete if-and only if every function in the scale has a,

"unit". In this case the

(5 , + , R.:F) is also an

the dual space of, 05 +

semimodule whether Or not

it is easier to work with

dimension.

structure of 15 is also "complete"; i.e.,

R
+
- semimodule, and (M + R+) is, in effect,"

, R+) . The fact that (M + R
+

) .is an R
+

M is a
1

complete scale, is one of the reasons4why
.

M,than wifh t , in a discussion of measure-

'There are -two rather different aspects of the question of completeness.

One concernS the existence of arbitrarily large values and arbitrarily small

values for each function. Ile encountered this question in connection with

32



a

.

, .

0

7

angular measure functions forsimple angles, where the range was only an

initial segment 'of.positive real numbers; the procedure there adopted,(of

formally enlarging the domain by'considering finite sets 7- or'"formal sums" --

of domainrelseInts) can sometimes be applied to extend the scale to a complete

scale. The other aspect of the onto-ness question,.is wheiher,"given any two

real numbers in the range, all real numliers between these also appear as values:.

We remarked earlier-that, in the actual recording' of measurement "readings",

rational numbers are usually used. And, as these are a dense subset ofthe

reels (this is a topological property, which means, rough4zspeaking that

rational numbers can be used to approximate every real number arbitrarily

closely) you might think that we could manage with scales whose values were
/

restricted to the set of positive rational numbers. But, in the mathematical

analyses which arise from empirical situations, we are frequently concerned

with functions whosedonainsiand ranges are real number's, anci,thedreal

numbers are thevalues of measure functions. In these analyses we need to

dear with power functions for non-Integral powers, exponential and logarithmic
4

functions, differentiation and integration, and so on; and a restriction to

rational arguments and values would prevent the use iof most of these functions

and operations.

Relationships Between Rdtio Scales. The fact that thaset A. of length

functions was a ratio scale was shown in considerable detail. The set .r
of anhlar.measuremnctions on the set of generalized angles is als6 a ratfo

N:

scale, as is the get pr, of area functions on the domaindof rectangular

regions, the'set Op of area functions on the domain of polygonal regions,

and even the set 'As of area funCtions on the domain of square regions.

It follows that the automorphism groups of each of these ratio scales are

1111 isomorphic(as ordered groups) to kR
ti

In many situations which arise in connection with measurement, we are

concerned with relationships between ratio scales. These relationships be-

tween ratio scales can be conveniently expressed in terms of monotone

homamorphisns (which are usually isomorphisms) of their automorphism groups.

(The monotone condition implies continuity, and conversely. In many scienti-

fic contexts continuity is possibly the more intuitive Idea, but it is simpler,

for us to use the monotone condition 'ather than a continuity condition;

cf. the relationship n :/L-46, of length'and area functions, "which induced !!

2
the tapping k . The corresppnding power function k

2
on (it' )

is, of course, a monotone, continuous isomorphism.) This is not really sur-

because in considering relationships between ratio scales, we are not.

320
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generally interested in particular functions in-the scalds, but'iAlthe scales

"as a whole". This suggests that we should look at functions .(sucti,as

n :A-46) which relate the scales' themselves. But when'we.do this, and

examine the properties, of such functions, we find that they do not generally

preserve the additive structure of -A , but they do preserve the "%mpopi-

tiorial", or automorphism structure. In mathematics it is quite common

study a system in terms Of its automoriallisms, so it should not surprise us

that significant relationships between ratio scales; should involve mappings

(i.e.', monotone homomorphisms) of their groups of automorp4isms. , .

In mathematical situations, the properties of these refationships will

have to be-proved. FOr example, the relationship T1 :

ss
of length

functions (for segments) and area funCtions for square regions, defined by
2

n(x) :,s >Ds.(a)j (where a is a side of. s ) has the property (which

follows from Theorem 3-5.1)-that T(k%) = k2TW) . 'Thud, if AA, AA ,

S
denote the respective automorphism gro induces AA- AA ,

defined by T1

*
:

2
-) . It is easily verified thati,T1, is,a,mDnotone

isomorphism.

In empirical situations, the feet that such a monotone homomorphism

exists will require justification. In many cases appealiTs made -to a

"principle" which Bridgman calls "the absol to significance of relatis

magnft.:,de". (See Chapter 2 of [17] .) Like most scie ic writers,Bridgman

works mainly with units and values, and does not Consid r explicitly the

structural relations on, and between, sets of measure functions. -His:took-

[17] is an excellent source of ideas, but, as you might find some difkiculty,*

in translating from his language -to ours, we shall prove (in the-next sedtiOn)-

that his "principle", and other

certain circumstances, there is

and that the propertieslr this

. ,
assumptions which he makes, imply that,

a mapping from one ratio scale to

mapping are such that it induces a homo-

morphism on the corresponding automorphism groups. We recall that these )P'

automorphism groups are all naturally isomorphic to the well-known ordered

group (R+ , , <) , so thatwe can reduce many questions concerning
-084r,

relationships between ratio scales to questions about the monotone (order

preserving or reversing) homomorphisms of (R
+ ) . Hence we can use the

well known properties ok such.homomorphisms (they are all power

which we proved in Section 2-?. In this way we shall gtabl±sh

ctions)
.1,24;

ectibn 4-4)
b

a simple mathematical foundation for the study of the subject of measure .

dimension.

p 43
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,11.-3'.Primary and Secondary Quantities

ilBri4gmants book [17] the word "quantity", and t expressi6ns

:"primary quantity and "'secondary quantity" are not defi ed explicitly.

The word "quan'tityP (sometimes expanded to "physical quan ity", or "measur-
.

sical quantity") refers to such concepts'as "lengt ", "area", and

"volume", whose measurement leads to the establishment of tio scales.

You will recall thckwe'did not attempt -to define awl' te = as "length",

and."area": for our purposes' it was quite sufficiendef tie.,-','length

fun Lion ", and "area function", and an important property of heixesulting
sift

' sets of functions was'that 7ach set was a ratio scale. So, wi hout attempting

to define the word:Iquantity", we require of each ."quant-ity" t t its measure-
,

Tent should determine a uniqUe ratio scale. This scale has a d main, which

we refer t s the domain of the relevant "quantity".

A "primary quantity" involves the direct establishment of me sure func-

tions (leading to a ratio scale, which we sometimes refer to as a rime
%

scale, of measure functions) by "operations" on elements of its do

the measurement of the'value o "secondary quantity" on a partic

element b of the domain of that quantity, certain domain elements,\ai , of

one or more primary quantities are associated with b ,,the primary q ntity.

values (x.) of these a
i

are obtained by direct measurement, and t e

value (y) ,of the secondary' quantity .b is calculated by some "rule" (If
.

yoU wish to have something specific in mind,'think o area for.squares asia

secondary quantity, and length for segments as a p imary quantity)'for a

-square b , a is its side, -x is the length of its si-&Fundera particular

,, length function, and y(=x2) is the calculated value the area' of b .) "'"

[Some writers prefer to use the terms "basic",-or "fuldamental", where we have

d tprimary "; and the term "derived", Where we have -used "secondaryt!N

- )
It is important to keep in_mind that the designation of a"quantity" as

primary or secondary is, to a considerable extent, arbl-yary; and that a:

Complete,"system of measurement" involves the classification of certain

quantities as primary or secondary, direct procedures flor the measurement of

thg primary quantities, and explicit "rules" for the in-direct "Measurement"

of the seConda e. of primary, quantity measurement, and
""%; =

calculation. ee\mut n only specify the calculations to be per-
;

formed on the'p xY values, but they lust also specify the-rules of,

association for !,tie domain elements.
,

Bridgman assuMes'that every primary quantity is "measured" by a sets of

functions, which form a ratio scale. In addition he'assumes as a principle.,
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"the absolute significance of relative magnitude". s principle. states

that, for any two -elements 1)1,, b2 in the domain of a secondary quantity,

the ratio of the corresp9pdng values (i.e., secondary measures) for b,

b2 , should bq the same, not:matter which particular set (one from each scale)

of primary. scale functions were used in the process of finding the 'Secondary

measures.- Nov if B is the set of all elements b in the domain of the

secondary quantity, th'n

we get a function :&(

of relative magnitude"

, corresponding to each choic

B R
+

, and the principle of

simply says that for two such

and any two domain elements b
1

b
2

,

gl(b1) g2(b17)

e of primary functions,

"absolute significance

funftiOns, g, 02

It is also assumed that all of these numbers are positive, so that, ror every

two domain elements b
1 A

b2 ,

gl(bl) g-1 (b
2

)

8-77), 277-02

,k A
Hence, for some k > 0 , g2 = kg . In other wdrds these "g" functions

for the measurement of the secondary quantity are similar. 'Hence they belong

to, and determine, a unique ratio scale. In most books you will find that

the quption of whether the set Of calculated functions comprise, or are

contained in, a ratio scale, is not made explicit. However, if you recall..

the situation for radian measure ip connection with the measurement of

angularity, you will see that the set of "secondary" or "calculated" func-

tions need not "be the full ratio scale--in fact it can be a single function.

The ratio scale determined by a secondary quantity is called a secondary scale,
,

but this term has no absolute significance: the same scale can be a primary

scale in another context. 1,.)e point out that

allkdeZaridary functions must be similar, and

scale. The converse is easily shown to hold;

secondary functions are similar, then the "relative magnitude of secondary

domain elements has an abtolute significanCe". This "relative magniIude"

of 9b
1

and b
2

is, of course, a positive zeal dumber, which is customarily

denoted ;by b, : b2 1006(The function p B X B defined by

p(bi,b2) = 1)1 :1: is ,easily shown to be a ratio operation or B; the ratio

operation which correstopds to the secondary ratio scale, a discussed in

Bridgman's condition implies that

hence determine a unique ratio

Lte., if we assume that all

1
Section 2 -5.
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The Relationship of Primary andNSecoDdary Quantities. Let F1 ,F2 ,

Fn
(F

i)
(f )) dedote the primary scales used in the description Of a 1_

secondary quantity, and let G = (g) denote the corresponding secondary
. _

scale., For any choice of a set of primary functions, the rules for the

measurement of the secondary quantity give us a secondary measure funetilm.--

, \A.Thus we get a mapping ,

Y : Fl X F2 X n -)G t

where. F1 X F2 X ...
'n

is simply the cartesian product of the sets of
functions F1 .

In order to simplify the discustion of the relationship of primary and

secondary quantities, let us first look at the properties of such- a function .

for the case where there is only a single primary quantity. That is, suppose

that the rules f6r the measurement of the secondary quantity kiave given_us a
TTTo

function `

Y : F -4 G

fx'om the ratio scale F to the ratio scale G . Now if we make a simplal

assumption.(which you will usuallyLnot find stated-explicitly) then wehdll
1. 4 vic

see that Y must have a certain important property. The assumption lihicnv.Pf,

we Make(and which we shall weaken later) is that, fqr each primary, funetpn

f -mad each positive real number x there is '"b" in theildoll

of the secondary quantity whose associated 're in the domain of thepi-i

scale F satisfies f(a) = x . (This is not the same as assumlng
,. A

'"a" appears in association with some b ; it merely says'that enough suen
3

"O
.

s" must appear so,that the set of their values, under each f , is all

of R
+

.)

We can picture this condition with the aid of the following diagrams,

which are^trivially commutati e because g is defined by composition a.be.

cPfS :

A
f

R
+

op

B R+

0

f(a) = x

b 4.4.-43(b) 4=-4 cf,(x)
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b. is the funCtion which associates a with b ; f is any function in the,-.,

primary scale F ; and T is the'functdon determined bithelrule4 for

calculating g(b) from, f(a) . The assumption stated w4gve, ip that

f(5(B)) = R.' for every f . (Or, equiva lently, that ,-fie(B) is onto It-
+ .)

We have already seen (by considering area functions for sqUare regions_ as

secondary quantities, daerliced from the ratio scale of length functions fore

segmentc.Kas a primary quantity) that thd function T may be the power func- '

tion qy: x -c
2

. The'qUestionofwhat"kind of functions m) may be used ,--
vor

in the _derivation of,secondary quantities, hasconsiderablt?Anterest. We

'shall see later in'this section that, provided that we%make a few quite

reasonable assumptions, the function T must always be a constant multiple

of a power function. (That is, there'exist c > 0 4nd are R , such that

Lc), cx for every x e R, .) A

0""
ta,
A

Assume nOw that f
1 2 '

are any functions in F . Then, for some
,, ,

,k , f" = kfl . Moreover, we have shown that BridgMahLs principle of

...."the absolute significance of rblative magnitude" implies that the functions

gi = 1'f1) , g2 = T(f2) are similar. I.e., there is a k' R
+

such that.

g2 =sktga. . We assert that,(with the assumptions we have thade).this Os.

is uniquely determined by k and,not by the specific functions 'fl and

f2 = kfl . This property is stated precisely, and proved, in the following

theorem:

Theorem 1 -3.l. ,F 'is a ratio scale with domain A ; B is any get; 5 is a,

mapping 5 : B -)A such that fb,
,
maps B onto R

+
(for every f E F ;

T is a mapping on R4.- with values in .114. ; and, for each f e F , a

../gzah-Ag ,g : 13' -4114. is defined (by composition) as g r- (Pf5. If the.

functions g = gE5 are All.simitarso that-the set of unctions
e 4400

tg : g.= TfE. ,f E 40' is phrt of,a ratio scale G whose domain is' B,

and if y- : F -)G is defined by Y(f) = g , then to each k e R+ there

. corresponds a unique k'

f

e R
4.

,'such that, for every f e F ,'

i(kf) = kii(f)* .

. 1 '.-;%

Remark:
ns

The statement-of the theorem looks quite. formidable, because we have
I

414:Elted all of the assumptiOns. If you keep in mind .the foliowing'dfiigram
,

\.-

Awhich, as you can easily check, isTCOMmutative except, possibly for the right, f

"trapezoid") then you will see that the assumptions are not really complicated;
. f. ,, . -

ft

o

as
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kf

Proof. Let

such that (

IS is' onto

Y(kf) = g(kf)8 = .kf Y(f)

13±'; let f eF,

fb)(100) =.k(n)(1),)

R ; this assumption

P

and.let b
1.

and
.
b
2

be elements of 13%

[This it where we use tie assumption that

can be weakened: -see below.] Then

43[(f8)(152)] (Tf6)(b2) =T[It48)(bi)] =1-(1)(ki)o)(bi) = kf(cTo)(101)

where k is the similarity factor connecting the Omillar functions

and Tfkf)8 Hence

kl=*(Vio)(b2)/(Tf6)(b1) .

But this retio of the values of b2 'and...hau is the same for all functions

in a rat%9 scale, hence, in particular, it does not depend on f That is)
/ -

the number kti= k
f

is determined uniquely by k j S., and p . Thus

.Y(kf) = p(kf)8 ='kq(Pf8) = kf (f) for every f e

cPfo

. , ..

. ..7 .
Remazk. If you examine the prOof carefUllyj you willsee that,we did not

' '"):ZSe the full force' of the asaumption.thet-f8 mapped_ )3 onto ,134. . What
. -

we needed was that for every lc e R , lihere must be .elements bi ,,b2 t , .

--'-----44dh that (fb)(b2) = k(f8)(1:11) : In -other. the range X = (DOB jof ----'
4..Te. +
1'6- in R must have the property thh_t,h07bet . ofiglequotients of numbers

-P---1 -. + 1:43:' ,, 'S;2f .

13in X must be, the whole of , . Thus;.inItle,proof,of this theorem, we

'. could replace the condition (fb)(B) =' Pel.;-?'Va4te weilt;Ci ;condition 'Ni: k4,1..

..1.:,

(4)
(X1 /x2 xl ) x2 Eflk(R)) --11 R
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You can easily verify that this condition does not depepd on a particular f ;

i.e., if-it holds for one f e F , then it holds for every other f e F .

Thus it is a property of 8 and Of the scale . This condition will be
7,- + ,

satisfied if (f8)(B) is an'initial segment of R tc-f423dian measure on

simple angles), and also if (f8)(B) is It terminal segment of R+-; (i.e.,

the/set of all positive real n6bers greater than some fired positive number);

buts it is not satisfied if (f8)(B) contains only rational numbers. You can

easily find othei "solutions" X of the equation (xl/x2 : xl x2 e X) = R
+

but not clear whether these have any significance in the discussion of

secondary measure functions.
I

,\
Exercises 4-3

1. With the notation of the above Theorem, but without either the assumption

.(*) ,,or the stionger assumption that f8 is onto, prove that

o*F(---4f8 : f e F)) is a ratio scale with' domain B.
ry

r2. Let p : B.X B -)11
+

be the ratio Operation which corresponds -4? the

A. (f8)(b )
1ratio scale 5*F . (I.e.

,
p(b

l'
b
2

) - (f5)(b
)

for every f e F .)
2

Trove that the,condition (*) holds if and only if p is onto 11+ .

4 .

3. Prove thSt (*) is Satisfied if (f8)(B), is either an initial segmeft

' or,a terminal segment' of 11+ , with or without the relevant endpoint

in each case.

4. Prove that (*) is satisfied if (f8)(B) contains all rational

numbers and also an, open interval (a,b)(a lb) Of positive reals.

(Hint: prove that for each x_e 11+ , 41.) n (a,b) / 0 .)

P.

DiagramChaaing. This_is ery convenient Place to introduce you to an

activity (associated with the use of commutative diagrams) which mathematiftans

refer to rather flippantly as "diagram chasing": The proof of Theorem 4-3.1

'assuming the property (*) , instead of the hypothesis 1.8, onto) is a good

,example of ,a proof which. can be visualized 'Very simply with the aid of an

appropriate diagram. We first -prove a simple lemma, which gives a useful

equivalent form forthecondition (*)".

Lemma. For every f .in F , {xlx2 ac2e (18)(B)) = R+ if, and only

if, for every
fl ' f2'e F , 'fc.6)(B) n (f28)(B) # 0
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.4.

0
, -

,
:, a

Proof. If .(*) holds, then for any fl , f2(= kf1) e F , there

eXis..t 4b1 , b2 4 B , such that (f1)(b1) = xl ,.(fib)(122) = x2 , x2/x1 = k .

Therefore (f28)(b1) = (Tc i8)(b1) = kx1 4-.-. i2 e (f2)(B) n (f18)(B) .

Conversely, for any, k e R+ , take fl:,, f2(= kfl) e F. . Then

Hence there exist b1 , b
2

E. B , such that 4.*(f18)(B) n (f28)(BY

(f15)(b1)=%(f2"b2) ='(kf15)(b2) k(f18)(b2)

(f2J.8)(b1)/(f18)(b2) = k . Hence (*) holds.

. Therefore.

Alternate Pa'6of of Theorem 4-3.1 Under The Weaker Hypothesis (I) Consider

the following diagram:

8

vr,

Id )5
-"-h!"-A...

Po-
(Yr- ,

.9)

,

We sketch the proof, by means of a sequence of Statements, all of;which are**.

easy to prove. You should follow the proof by drawing appropriate sub-

diagrams.., The proof is'much easier to follow thin to write.

.00

..;

(i) The top "triangle" is commutative% (Definition,of ki).]

(ii) Th4 left "trapezoid" is commutative. [ Trivially: MI is

function.]

(iii) The outer "rectangle" -is commutative. [Trivially, as for

(11).]

(Iv)
p For a fixed, f , there is a, unique,, similarity transformation

p(= kf , say) which makes the loweg,"triangle" commutative.

[The functions qo are all sindlar.) .

414



(v)
'

401
The right "trapezoid" is "partially commutative". Specifically,

the "sub-diagram" (in,which pt , p" , denote the appropriate

restrictions of ()

/. .

is commutative. [This is where you must indulge in "diagram

chasing', to build up the following diagram:
4

6(b) (Tch) (13).
9

.a.

(iEDE§) (b) =

.'Do (1cfcn) (b)

The essentialwint; is that, giVe4A element in (f8Y(B) ,

we can track it,"back" to a (notneciasarily unique) element
1,2frVe,'

b'e B , and then "forward" to-either. (K
f
cpfb)(b) or

(pkfb)(b) , which must be the same, because Of the commuta-

tiviy of the outer rectanglehe two triangles, rid, the left

traPaioia:] Tie idea of'thit Idiagralm:Chasine fa -COAVeyedby

the.following set of diagrams: */.44

0
Schematically, for- every b e 'B (wi ;-!, " ''';eaanirig that

the functions represented by the mar *"061,-n,paths"

must agree where they."maet") e ;1"
T,.:.

,

h.d

c5.

cf,

-
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F., ,-.. ,1
I /' I

.' .
i -- J,-
I

wi I

1

t
I

is I

I i

I I I ,
I I

1

i
w

I

1
..1.

I

I .,' ..
1

, .

.s
.. I

4c/. > .%-4
b (cp(kf)8)(b)

In --
.,

-71\ ..
I \
I

\ \ ..
/ .\

I \\ ,
I T
I I

..- I

I
I ...

I
1

I

fQ

I I

o

b 1"( (Tfs) (b))

("..f.

I

L

17f (cp (r(b(b)))) -*

=

alb

`---........4,

..\ /..."''.. .., /
.. . ,T,/

b cp ( (kf )(b(b)))

cp(7(f(8(b)) ))

I

,
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../

Therefore, for every x e (f3)(B)

N x /
N. /-Ye/ 1

.
1 .

'I I

.

I I I

i 1
1

1

I
1 ,

I

I "1 I ,,<1-
, ..

..
1

1 ' i
I .,

12' .

cP(ii(x))
,...

2 f (cp(x)).

,

(vi) For any f
1

, f
2

(=.kf
1

) : condition (0 implies that

= kf [ (*) implies that there is an
f
1

m'e .(fi'a)(B) (1 U20(B) . From (v), cp(kx) = kf kf q(x),
1 2

hence k = k .1
f
1 .f2

(vii) With p'.= TZI = kf for every f_, the right "trapezoid" (and

hence the whole diagram) 4.s commutative for every f E F .

[Iv) and (vi) imply that (with p =,,D) the right

trapezoid is copnutative for U- (fa)(B) in the upper left
fEF

+114)
position. Thiptunibn is easily seen to be theiwholeof R. .1

For given k , there exists , such that y(kf) = k'y(f)

for every f e F . [This is just' )k =1E1(Pfb for every
.

f e F , whift follows from .(vii) .1

.
, .

Corollary. With the notation of the theorem, but with the assumption ,(*)

(or the stronger issumpticin that I'S is onto) replaced by the much weaker
. .

assumption B / 0 , the existence of k' such that T(kf) = k'y(f) for
i .

every f E F: is eqpiyalent_ta the exi§te4oelof.kii Suh
,

that thediagram

below is commutative for every f

I
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kf

(We leave the proof to you.)

R
+

P

Remarks;

L. Notice how the condition (*) (in the equivalent form
,

(f/S)(B) n (i:6y(B) 0) enabled us to "11 together" the possibly,-
c

,different numbers k
f,

for different' f E F ,, to get a uniform value '

k
f

= It' for every f.

2. It is easy to seC that the condtti: (*) i not a necessary condition

for the conclusion of thetheorem (which is equivalent to he commuta-

/ tivity of the above diagram). For example/if B .contains only one

element, (*) cannot pobsibly hold, but the resulting diagram can still ,

be commutative. For this reason (see later) we will not want to require

(*) in the definition of a secondary quantity which is derived from a

single primary quantity. The reason .for the introduction of (*) was

tbat,it does, in fact, hold in certain well-known cases; and it is a
,

sufficient condition to insure the result, of Theorei 4-3.1.

A

Functions Connecting Ratio Scales. A function (fri/Ill one ratio scale to

.9.notlier) which has- the property prayed in Theorem,4-3.1,,will'be called a

uniform function.. Moresptcifically, if F and G, are ratio scales, a

fUnctionT : F--G is a uniform function if for, every k e R+ , there exists

a unique 10 e R
+
*, such that. r(kf) = k'i(f) for all f. F . The

noTogy seems to be a natural and suggestive use of the ..ford "uniform',' in vie*

of the fact that kl is uniformly determined by k and does ,not depend
-

332 33-5
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-N. on f . Thlis if a secondary quantity is defined in terms of a single prtmary

quantity, and if.condition (*) is satisfied, then the description of the

secondary.quantity determines a uniform function from the primary scale tjp

the secondary scale.

The condition of uniformity may be regarded as a commutativity condition

with respect to the automorphisms of the respective scales. If r : F

is a uniTo"em function, and K denotva, as usual, the4eutomorphism of F

determined by k > 0 2 then the uniforimity of r is equivalent to the exist-
..

ence of k* > 0 such that'the following diagram is commutative:

in

of rat,ieoperations and scalar multiplications ,we should not be surprised to

find that there is another simple way of looking at a uniform function.' If

F is Avatio scale, 'then there is a ratio operation on F (p* F x P -41)
* F

defined by p
F

t (f
l'

f2) -.f
1
/f
2

'If is a uniform. function from

F
k

F

(

k, .

Our definition of "uniform, function" used the "scalar multiplication"'

F and in G . In view of our'earlier remarks concerning the,relationship

F to G , then it is easy to show that thwe exists a related furiction

r : R
+ +-

which-makes the following diagram commutative:

*

F X F
pF

R+

GXG
PG.

'41 Po-
R

.

-;

-44*
Conversely, if such a r exists, then it is easy to show that

uniform function. This suggests that we may look at a uniform.

raticiscales aCa function which has the property that it takes

functions in P which have'equal ratios into pairs of'functiOs.

have equal ratios. I.e.,`"r preserves equality of ratios.

333 3 u
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We shall return later to the discussion of secondary quantities which

are measured by the use of more than one primary quantity, but meanwhile we
/ . f

pursue the stuodr, of the relationships between ratio scales.

Theorem 4-3.2. If F and G' are ratio scales, and if y : F --+G is a uni-

form function, then the function y : k -,k' determined by y is a homo-

MAPhiSMr 7,4 (R+; ,) -4(R+, ). (Equivalently, since k e k' ,, deter-

mine unique automorphisms of F and G respectively, y determines a

homomorphism r : AF -+AG Of the respective automorphism groups of F

and G .).

BrRof. Let k'
1

e R+ , with 7(k1) = ki ; 1(k2) = k2 Then, for all

Hence, for all f

f e F r(y) = klY(f) .

T(kik2f) = T(ci(k2f)) = kp(k2f) = kiky(f)

i.e., 7(k1k2) = klk2 = 1(k1) 7(k2)

so that 7 is a homomorphism.

To further clarify the properties of uniform functions, it is. natural

to appeal to properties of the homomorphisms of (R+ ) which we proved'

in Section 2-2. But, if yOu'refer back, you will see that we did not con-

sider all homomorphisms, but only thoselwhich are monotone (alternatively:

continuous). In the case of secondaryc quantities, and the unif functions

on ratio scales which'are derived from the measurement of sec dary quantities,

it is generally assumed that, for every element in the domain f the secondary

quantity, the values of the secondary quantity vary continuous with the

value8of each of)the associated primary quantities, when the pr ry measure

functions are varied'within their ratio scales. (Bridgman assumes, the

stronger condition of differentiability, but it was shown, in 1946, by

Martinot- Lagarde that continuity would suffice.) Trapslated back into our

language, this implies that the secondary scale-change factor, 41 , is a

continuous function in each of the primary acale-changtfactors. (Scale-,

change refers, of dowse, to a change oaf functions within the relevant ratio-
.

scale.) It can be shown that this assumption, together with the homomorp

property, implies monotonicity, and conversely, that a monotone homo ism

is continuous. ,

. We shall be interested in arbit ry monotone 'uniform fUnctions, defined

on ratio scalesj and with values in a et of similar functions. As such a

set can be uniquely imbedded in the set of all similar functions, whic,is a
.
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A

.
(not necessarily complete) ratio scale, wemi ht as well assume that the value

-space (but not necessarily the range) is also a ratio 'gcale. .Let T : F G

be a uniform function from the ratio scale F to the ratio scale G .

from the theorem above, T induces a homomorphism 7 , ) 9(R+ )
If in addition, the induced homomorphism Y : , ) +

, :) is monotone,

then we say that T is a m onotone uniform function from F to G . '[It
.

follows from the above discussion that tassuming the continuity condition
,

for the induced function k -c1) the functions on ratio scales which are

determined by the measurement'of secondary quantitie4%.ee e monotone uniform

functions.]
e./

The following theorem gives the fundamental property of a monotone

uniform function:
.

Theorem 4-3.3. If G is a set of similar functions, F -is a ratio scale,

and : F 7,G is amonotone uniforW function, then the induced homomor--

,phism Y: (R,°*) (R is"' power function. That is,stherq exists

a E R ':-(uniquely'determined by T)-such that r(k).= k , for every k e 114.:

,Proof. Since y is a monotone uniform function, T. is amonotone homo-
. . )morPhism from (R
+

) to (R
+

, .) . Hence, (from Theorem 2-2.3) there
'

is a unique a E R such that fin: every k,E 11+ , 7 : k -)1e,.. .(The nuMber,
A- A ,

.. ..
a is, of course, logk ((k)) , for every k't 1 .)

.
'. g 4.

. .

.. r
Remarks:

::t °-
e4:4.

4 ;4: . '

,ram:
1. This result can be 'conVdnie,ntlyi,indicated by'thecommutqtive.di ram:

- -4) i

q7 ; :rs C e , 4,, 4: s

8

^.

I =
,

k
.

, ( ,
F ,'''- ,.... ,41111t:' Cid *

S.;°

*.-
.0

.

.i'

I ,!

G
11

I

re-

.
,

; te

eiNzt%

.-

0

42)

The result of the, theorem is that; if T is a monotone uniform function,

there exists a unique a such that this dligram is commutative for

every k . That is, a does not depend on k , but only on-I .
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2. We have now shown that the function I : F satisRies the condition

r(kf) = jeT(f) , for all f e F and all k e 111. . If you recall the

definition of "homogeneous function" for functions of real varigoles,

you will see that it is now reasonable to call a monotone uniform func-

tion (frog scale to a set of similar functions) a homogeneous

function. This terminology (or something very much like it) is widely

used by scientists in connection Idth the description of secondary

quantitie6 t
P

'V
4-4

3. If c = 0 , then I is the constant function"P : k , and nence I

is a "constant" function,which maps F onto asingle element de G .

(Cf. the situation for angular measure, with radian measure considered

, as a.secondary measure.)

If a / 0 , then T-4.p A monotone continuous isomorphism (i.e., a

continuous automorph'sm) of (R+ ) , and (as youmay easily prove)

T.is 1-1 and" onto. n this case G must be a ratio scale, bat it is

not necessary that G' e complete even if F is complete; in fact it

is possible for every function in G to be a constant function.

4. Without the assumption of monotonicity (or continuity) the question Of'

"finding" the hOmomorphisms from (111. ) to (R+ ) becomes quite

difficult; in fact this problem is closely connected with the question0

of Lebesgue measure on R measurable sets, and measurable functiOns.

It can be shown that if such a homomorphism.is discontinuous at any

point, then it is everywhere discontinuous. [This last result is ts

eqtivalent to : any endomorphism of (R
+

) which is continuous in

some open interval of R
+

, is continuous everywhere... This is closely

'elated to the'result of Exercise 242.13.]

The exponent a , which is uniquely determinedey I , is called the

degree, or dimension of the homogeneous function T . We denote this.

by dim T . Thus "dim" is a function dim : (r) -411 defined.on the'

set of all homogeneous functions between ratio scales. Whenever it

is necessary to distinguish this concept of dimensiOnaerom,dEhers, we

refer to it as the measure dimension of T . The concept of homogeneous

function is, of course, definable for any R - semimodule, and the
AAR

notion of dimension for a homogeneous ratio scale mapping thus coincides

with the general concept of the degree of a homogeneous function.

-1

If G is,a ratio scale, dim I is often referred to as the dimension

of G with respect to F and I . If it is clear that a particular

6.

"t-
.444.
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/
homogeneous 'function T is involved', this'is frequently abbreviated to

the dimensiop o,f G with respect to F " , or "the4dimension of G in

F " ;Ihis is often done when' G is the scale defined by the measurement

- of a secondary quantity, for in this case' the description of the secondary

quantity specifies the functions ö and (1) , and hence e ermines a

particular r . But, as aveseen in the case of area and length,

exactly. he same ratio,scale (e.g., the ova scale) can result from two
1. .different "secondary quantity" descriptions, and the corresponding how)-

geneous functions may have different dimensions. This suggests that.wt

should use the abbreviated terminology "the dimension of G in F "

with considerable caution.

Theorem 4-3.4. Let c E R
+

, let I : F -)G be a homogeneous funCtion, and

let cy denote tfie fynction cy :,f -y(f) . Then

(i) . cy is a homogeneous funOfion;

(ii) aim (') = dim T. ;

if T
1

; T
2

are homogeneous functions from F to G , with

dim yi = dim 12, then ,for some c e R , 12'= c1). .

Proof.

. (i) Given k , there exists le' such that T(kf) :---., kil(f) for

,.---.- every f e F . Hence

cy : kf -40(kf) = cktI(f) = kl(c1)(f)
I.

so that cT is uniform, and determines the same correspondence

k. -) le as Y , That is Y = cT , and hence cy is a.homo-

geneous function.
VI!

(WI 0 This is immediate; since 7 = cT .,

,-,

(iii) i, /Let dim yl = dim y2 = a ; and let r .e F, , Then T (f ) and
91:._---: -1-0- -:

. .......-......,..... i ,.......
--4-

.

.
T
2
(20 ) 'belong to G., and hence' there. exists c e R+ , such..

, x, '

)
.,

that

Y2 (f0 ) = cT
1
(f
0 )

We have to show that c does not depend on ,f^ . Let f be

any other function in F Then for:Some k R+ f = kfo .

kr
3
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00

Hence

Y2(f) = y
2
(kf

0
) = le 1(f

0

= k
a

cY
1
(f
0

)

That is Y2(f) =

and the proof is

= pk
a

y
1
<f

0
)

= cr
1 0
(kfs)

= cy
1
(f) .

cY
1
(f) for 'every f I

complete.

s

0

BO that y cY
2 1

Remark:. This theorem tells us that a homogeneous fulIction y .between two

ratio seales r-, G , is completely determined by two things:

.0)

(ii) the dimension of Y .

the value Y(f0) for any f0 e F ; and

Moreover a homogeneous function Y is determined ttup to constant factor"
,t

by its dimension.

two elements of F

there exists kt ,

Alternatively, y is completely determined by its value, on

; for if 1 , f24= kf , are two such elemental hen

such that r(f2) = kty(f
1

) ,and dim y = logicks.

The proof of the following theorem is:quite straightforWard:

1

Theorem 4%3.5. If Y
1 -

Fr., G. and Y
2

: G -)H are uniform functions, then
, \.._

r
2
1, 1- is a uniform fupction; if

y 1 and y2 aretomogeneous, then so is
. ,

72y1 , and dim(y2y1) = dim y2 dimixi . ',
. ,

.

. , 1 .

The Measurement of Secobdaxl Quantities. Now tilat we 44e established

some of tile basic propertiesmof hoMbgeneous functions,_tie can easily discoVer:

tbe na*pre of those functions cp on R4 .. which may be used in 'the "rul:et" which,

define' Secondary measure function's, if these rules aA'tolead:t0 homogeneous

/ NaCtions on ratio scales. To keep things Simple, let us look first at the

case where we have a domain B of objects, mid associated with each b e B

t

CIA

. there iB,B unique object 'a = 5(b) ,in the domain A of a (primary) rat*
- ,

scalep.F . Then a "Alle",for'the determination of measurelUnction for a -,,

. secOndary quantity, is a combination of the'fUnctibn 5 , the selection of a

00



ffunction 'f s F and a fun6tion R. --> R . Corresponding to each f', F. -
we get a secondary.measure function g such that g(1), = eP(f(.8(b))) .

This is easily pictured from the diagrams

A I. R+
fa , ° . f(a) = x

.
.

S
eP SI

fa

, .
I
)

g +
lib

k
.

b
I

.

.... .-

--- .7 -- --OP- .. Pr.
_

, 04it
rBgcause g is defined by composition, the first diagram is `trivially com-
mutative.) 'Our v)ajective is to find those, tunhions eP whic1 will make the

*toAu-lotion f Tn a hotngeneous function on 'F .

Let us assume that ethe functions 8 and cp determine a ratio scale
G and a homogeneous function r : F --> G . Then there exists a R ', such
that for every .b E. B every f E F and every E R+.

- Hence

(r(kf))(b). IF[(x(f)(b)]

Icp(kf)o)(b) =cp(k(f(b(b))))'

That is, for. all x E f(B(BY)

= ka (pi( f(s(b,) ))

eP(kx) = kacp(x) . 'le\
.

. I
This means that el) is a homogeneous function in the usual ,sense. We assumeJ /that B / so ; this i6plies that (x : for t least one f E F ,

,x I ±;(6(1:)41 =;.:13±":5,:".-:-/lence 0 must be det'ined on all of R+ ; and, putting
.-.1 , '1,, .musi.,,satisfy

0

x=

cp(k) = ka cp(3.) , for every k e R+ .^

= cka (633.y) ;',where c = 0(1) .

Conversely, it is easy to verify that 'if, (for..daVc E R+ and any
"a e R) v we define" 0: ri, II by (p x cx then the functions. cpfb

are`all similar, and tfidrefore determine a ratio scale G with domain B-;

...... 339
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', , 6
, #

, ,
and the resulting mapping from F to G is 3a homogeneous function with,

. . . 1

dimension c:. We recall that m is a homogeneous fUnction (in the usual

sense) with 'degree C6 , so that p and I are both homogeneous, and both
.....

have the..same degree. That is, dit Y= deg Tp . k

--,

'

We incorporate this result in

Theorem 4-3.61
. .

(1) Let F = f) , be a (primary) ratio scale, with domain A

let be 8 mapping from a set B 0) to A ; and let T

.be action from R
+

R
+

. Then the composite functions

g : B --/R4' (defined by g = mf6 , f e F) are all similar

the induced function f Pf6 is homogeneous, if, and

only if, for some fixed a E\rit-, and some fixel c e R
+

,

/ x cx
a

.

(ii)

. .

Remarks.?

"MN..

The function q) : R+ -/R+ <defined by p' x is,homo-

geneous of degree a ; and if, Y : F G is the corresponding

homogeneous function on,.F', dim I = deg q) .

, ate. '-

1. If we use Bridgmanss language, and refer to the "quantity" measured by

F as a "primary quantity", and to the "quantity" measured by the

"g"-functions as a "secondary-quantity", then c is called'the

dimension of the secondary quantity with re4ect to the primary quantity.

2. For fixed F B 6 , and a , the secondary measure functionsdeter-

.-mined by T: x -/-41 (for different positive c) all belong to the

same (secondary) ratio scale. If cx4 0 , this secondary scale is the

set of functions ( Tf6 : fEF T : x -/x
a

) OL11-0, there is only

One function in.tEe latter 'Set, andTthis'function "generates"- the .-1
A

secondary scale. .
4

It is important to keep in mind that the determination of the measure

functions (g) dependS on 6 as well as on T.. -Thus if different func-

tions "6" are used, we may get quite different sets of secondary measure

functions on B . WhetSer or not these sets are different, they must be

regarded as derived from different " secondary quantities ". For a fixed B

by using different "6", and "0' we may obtain the same set of seconda14

measure functionsdn'different ways,, These must be regarded as being deter-

mined by different "secondary quantities ". Ise., a "secondary quantity" is

340 34'3
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ti.

.

more than juit a sett of similar functionp, or a ratio scale the concept of

t'secondary quant

ratio scale

also i ludes the rules by means of which the secondary

obtained.

gonal regions, say) is not itself a "secondary quantity", but there

s our set Ls of area functions (on the domain

are many (in'fact infinitely many) "secondary quantities" which determine

the same set of area functions. If these all had the sole dimenssiori.42). "
we could say that "'rea is a secondary quantity of dimension 2 in length".

But, as we have seen, there are also homogeneous functions of d2mension 1

Ithich relate the ratio scales for length and area, and these homogeneous

,, functions are associated with secondary measure fretiOns. ft

4P,

This difficulty with area functions is typic'l of the confusion which

arises if one attempts to associAte a dimension with a set of secondarf"--

measure functions, instead of with the homogeneous funotion (either on the
.

scale, pr on R+.)..twhich is determined by the procedure for."measuring" the
. .; 1., T.,' -

secondary quantity.

\137 vt p

The construe on'of the no, functforis (see Section -5) red,ating the
.4

length and area alps, has its courfterpait in connection with the'relatioft:.
4

ship of the length and volume.scales. Recall the procedure which we described,

for the empirical measurement of volumgt of liquidsaryl for the measurement

of tht...,yolumea of solidety displacement of a liquid, in a container of con-
--N 1 / V

stant cross-section. This established a homogeneous function of dimension 1

from the length scale to the volu e scale. Y4u tight regard ti.e length/area, ,

.
. .

example as rather "pathological ", ut the length /volume situation is certainly

quite natural. In fact a great deal of volume measurement is carried out in,
..,

just this way, with the additional feature that tlie'resulting "lriear.scale"

is,"calibrated" by napping the marks on the shale in terms of the corresponding
.

.,, -,77

!"cubic"measure function.

. Our purpose in giving these examples is to emphasize that there are

1,
implicit- conventions fn everyday uLge. 1.4hetif it is. itated4atiflarea'has

'dimension 2a in length", it is implied.that a''dimension 2;r correspondence hap

been agreed upon. Usually this will be the homogeneous function, /1' of ...

Chapter 3, but it could be any homogeneous function which differs fl;om n.q.

by a positive constant factor
)

(Recall that, from The6tem 4-3.4, these (

arethe only homogeneousfbnctions of dimension 2 from the length scale to
4 t

the*area scale.)

.

1
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1

%The Definit, 'On of a Secondary Quantity. You haVe possiblynotic d that we

have not yet given a genuine definition of "secondary quantity". The;better

scientific treatments of measurement and dimension insist that a se ary -

quantity (in an empirical sense) cannot be considered except in the context

of a 4pecifit measurement procedure,, bald that eiren though two such procedui2es

might lead to exactly:the same secondary ratio scale, they must be considered
.

es determining different secondary quantities. Wc certainly agree with this

po.into of :view? because without it all discussion of "the dimension of a

secondaty quantity" would become meaningless.
. ... _-

%
It follows that, whatever definition we Aaopt for "secondary quantity!',

the definitioh must preclude such guestatements as "area is a secondary
1.

ii/quantity", and it Mitt also precl such statements:as "theftaQ) rea scale! (which
-:-.

is well defined after we specify the domainl is»a secondary quantity'.

-The above discussion suggests that, in the case lihere,asingle (primiry)
.

scale is involved, the most useful'procecture would be to define a simple': .

secondary quantity to. be a set {F , T ] (whgre F' is a ratioscale

with domain A S is a furiction B , and T a function 114.-,R+)

such thilt , '

'.,si
- -A. i

ISQ-1. The function\ s. . Tit are all similar, and the funciicg

T ! f -0.Pfb - is homogeneous: ,
°

.p,

. ,

As we have
.4
seen

.

above,$,BQ-1 is equivalent to either of the conditions:
. , - , r.

'.-
SQ-2. . T is'hpimmgerieoUs; ..

»

or
. ,,

,-

'. ,

1 I.
e
.

>
. . .

SQ-3., There exist c 0 , Cr E R , 'such that T.: x -)cx
a

; ,..E
''' ,

'

so we may use any one of.these three coriddtions'in the definition. Thus
*-- -::"---,- - ---'-',17. ,-.' 3-" (-V - f "Csi'
db.-fined the dimension of the simple,,secondary quantity may be defined to be

., ....____. ...-e. e -
. .

thedegree of )i, or, equivalently, the degree a of T'
f

'4
. , . ,,. la

:IP' '--- i , ,
.

. ,,_

We return latet to the question of an iplropriat,e defAhitioh fot a
.

. 4:',- r . .,..
- .

secondary quantity derived.froMmore than one (primary) ratio scale.,

-

Secondary Quantities Defined Using Several..krimarr Quantities. A

secondary quantity is said to be determined by several primary qudntities if.
' .

(buti,vmt necessarily only if).the foilowing conditions are satisfied:



i , oftl - , _ -

1

r ,
16

(k)1 , I

illiel3e.is 4 finite se of'prima quantities ,! correspanding o

the ratio scales Fi (i = 1, 2, ..., p) ., with domains 4i .
pF

%

(ii)1 There is a mapping 6 from"the domain B of t 'he seZOndp.r4

quantity into the cartesian product A = Al X A2 X ..! X4Wn

of the domains. f -bile primary quantities., (ntuitively, each
.

.4

domain element b deteradm
1 '

es a,Set (a.' a
2

,
'''

a
n

) of
/

elements, one fram'each domain A
i

)

There is a function : B X R; X
.-
.,

471
,-.. R (where each

. ,

n

R! is equal to' Rt.)
,
from which a .secondary measure function

3, .:
O .

g for B. iscalculated by.the following 'rule":. let

fi , f2 , .:, , f1 be any set of measure functOns from the

respective prAmary scales, and let b E B . If

8(b).=,(i
1 '

a
2./

,'.. a
n
) then g :-B -4R

i-

As defined by
f ... r

. 1g(b).= cp(f(ai) , T(a2) 1 ... , f(an)) . ;This, may be

pictured from the commutative diagram ' / : 7

s A

-4.

;
1 It

1

,

where g defined by composition (So that the' diagram

trivially commutative) -and ITfi = fr' X f2,X X, f' ,
n_

Ri 5 Ri X R2 X . X Rn
- I

,
.

.(iv) For each chOice of functions f
i '

there will. beta Unique',.j --

:-.
(but not necessarily different) ne function. It is

;,..,-

assumed that all such .ug" functions are similar, 'and hence

they belOng to (in fact, determine) the same ratio scale., t

4 .
.

(The set need not be the whole scale cf. radian measure}

,and the scale need not be complete.)
. ,

-..

141; 316'S4G ,



(v)

, +
The composite fUndtion onto; Mi.'

of functions f fn1
, f2 , ,

[Remark: As ti,n the case of et 4-3.1', conditlon-(v) could be weakened,,

but we leave/it iri this' form a ordr:toyS 114 the following discuSsion.

If you follow the _discussion carefully tb sea where we:II:aka use of this '

Condition and its consequences, you will see.how.it could be weakened.) A

ti

Let x
a-

f R be fixed (j / t) ^j let iffi Ti F. -and define
.

Bi = tb : (ati)(s(b)) . (xi , .. , xi
-1

, xi , xi+1 ,
s

... , xn- ) , xi'E Ri) .

Then B
i

depends on the choice ofsthe: Ti c'

'

and on the functions f (j / i) ,

.
J

but with these fixed, B
i

is the same for all f. E F
i

. t'et h
i

: x
i

^4
1

- -
I (x xi

-1
i xi xi+1 , . x ) . Then the functions h

1
depend

1 '
,

II

.

on the choipe of the x
J

(j t J.) . For each choice of 7c

J
(j / i) , and

each choice of
t
f..(j / i) the diagram below is commutative for every

va

fi s Fi :

*

(pi

A 111'

TIT

b(Bi)
i

B,

s

r
.

-denotes the "projection ", pi : (a3 ; al:, ... , en) .-) al.)

% .

Condition (v) lies that (f
i
p
1,
6)(B

i
) = R

i
. For each choiCe of the'

..f.

. .

xj and the r
\

' ,,-(j il ,, and for, each i , there is a fiancti4n g : e,, R+/

such that the resulting 'mapping gi- is equal to\_g[Bi. This function ig is

uniquely determined by -ei,. !(Recall that. the ,"g", functiond are,s ilar,

so that two of them must be the same'if they 'agree on a single elemen of B .)

.1

fV

34r7,-



b

,
,

. W
Heaceif we keep Tc

J
aria': f ed 0 / il) , Tho erit

the situation represented by the following diagram:

.."--eLo

A
f
i

1

A

B.

a 1

gi

T.,

.1 Applies tb

It

,s

.,

This determines a uniform function F
i

(where G = (g )) and hence

a uniform function Yid: Fi , which might.depend on the choices made for

and fj (j / i) . ) , O

We can now use Theoret 4-3.6 (which dealt with the nat ure of p for

the case,ofa secondary' quantity determined by a,single qUahtity) to discover

the nature of tp for the general case represented by, the above discussion.

a
, ).

+
Theorem,4-3.7. Let T :,R1 X R2 x ... x R

n

+
-)R

+
be a function used-inthe

determination of ,a secondary quantity in accordance with conditions=

(i)-(v) above, and assume that for every i , and for every ,choice (Sr''

the 7 and f (j # 1).

Then there exist unique

positive real constant

;
(1) x2

, the resulting uniform function ri, is monotone.

real mumbers , az ; , an , and a unique

6 such that

-Tral aft.2 ,7 .cer

1 2' n
.0. , X) -->CX X x

Proof. With the notation of the above diagram, and with the assumptions of

the theorem, the uniform functions are homogeneous. Bence Theorem 4-3.6

applies, so,that, for some redl numbez a'and some positive ,constant
t

(both possibly depending on the'fixed and the ,fiXed functions )xj ,
f4.1

a'-
. ci Xi

i
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Yt

Hence, ,for

al+ e R

ai
cp: (xi , , xi , , x) ci xi .

= 1 and x2 = x3 = = xn = 1 , there exist c > o and

such that, for, all x
1

c R1

a
1

T (ki ,1 ) . , 1) ex
1

0 _
Keeping' xi fixed at xl , and with x3 = x4 = = xn = 1 , a repetitioh

of the argument implies that there exist a
2

c R and c
2
> 0 such that

a
4): (;ci , x2, 1, .., 1) c2x2- , for all x2 c R2 ; (a2 and the constant

a2-
ic
2

may de1...)eoall on x- i). But, when x2 '= 1 , the right hand side (e
2
x2 = c 2)

_al JP4].' ,
must be cx

1
. Hence c

2
= cxi , and hence

)
x ,

a a
cp : (xi , x2, 1 , , 1 -acxi

+ 4-
for 841 E R

-1-1 2
e R2 . Repeating this processj,we obtain real numbers

al , a2 , , an , such that

,
63. a2

- anq) : x2 xn --) ex]. x.2 ... xn .

.
. .

Clearly c = T(1 , 1 , ... , 1) is unique. To prove the uniquenesg.
. 4 , al a

2

2
an

"of the numbers a i , assume that .(xi , x2 ..1 ,,xn) = c ...
xn

T xl xal at2 at IV _.. a at;
= CX1 X2 ... xnn . Then (with x3--,= 1 , j / I.) we get xi s- Xi for

i
. , . ai -at

ieach i . Hence. xi = 1 , so that a '= at for each J.' . Hence thei i-,--1--- -
.....1 " sa

til
a
2

a,
, expregiion cxi x2 xn

n
is unique, and the numbers al/, an the

°uniform functions ri whose.dimensions are ai , do not; in fact, depend on

the choices made during the proof,

w

Remarks:,

a
1 2 a --

1. The functions T: xn) --> ex x n
'(21'

2 , 1 2 ''' are.

'homogeneous in the standard sense (with degree E ai) but they are not

346 .
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LTh

the orly sun' homogeneous fungtions. They also satisfy the st

"homogeneity" condition

ai a2 a
cP: (kix1 , , knxn) ^4 k2 kn [1:p(xi , x2 , xn)

4

The.-t, is, these functions IP are umltihomOgeneous functions.

You can easily verify that these functions are the only functions

+ + +'
P >Z R2 x.... x -Rn -'R which are multihoMogeneous.

For fixed B , 5 , (Ft) , and° fat) , the same secondary scale is generated

al (x2
a

by the functions vrrfi)e) (where cp : (x1 , x2 , .:. , xn) -4 cx x2 ... x
n
n)

for every c > 0 ;
i.e., the scale is determined by' B', 5 , the primary

scales, the ai , and any particular value of c : e.g., 46 1 . The

corresponding function, (I) , can be "factored" as'the..composite of-the

, , 4

Cartesian product of the separate homogeneous functions Zpxi -,xi ,

. /

and the ordinary real number multiplication function (u) on the car-

teian product, as inaiuTed in thb commutative diagram`.
.

, - 4111 1, I-

'7/

, x2 , xn)

r 2

TVPi al a2 a
n)

,

61 / 42
x
n

a ra 41.?
1 2

a
n

xi x2 ...
n

V 4\ 4

If the scales Fi are all different, then we say that a
i

is the
;

dimension Of the secondary quantity in the pimary quanity . If the

' primary scales are not all distinctt then the dimension of the secondary
Zot

quantity in a primary_quantity,,F'is defined to be the sum of theaxponents

a
i

which correspond to those .F
i

which are equal to F . (The reason for'

this latter definition will become more clear,as we proceed. See, Theorem'
, ,. ,

4-3.9 below.)` Meanwhile you shbuld recall that the establishmeht of area'-,

functions (as secondary quantities)_for rectangular regions can be considered'

in this latter category. ',Poi if b is a rectanguldr region, with sides

(segments) a1 , a2 then, Bb = (al,a2) . Andif fl-f-f2 are any two

37350



-
1.eng,d, '.fun ons irol the ratio scale F of lengt funOtions for segments,

the fuhct .cin g :fib -4f
1
(a
1

) . f
2
(a
2

) is,an atea
1

function for rectangles.
I 1

MoreoYer afl of,the above requirements fot the definition of a secondary

quantity are satisfied (you should check this) so that we obtain the area
.

scale for rectangles from a secondary quantity of dimension 1 +.1 = 2 in

length. (ut
'

as we, have already remarked, the same area scale can also be
!

obtained from a secondary quantity of dimension 1 in length; so we do not

refer to the area scale itself as having a well-defined dimensiOn-l.h length.)

Remark: Perhaps you were surprised that, in the above example regarding the .

area of rectangular regions as a secondary measure, we selected different ,1

Thflotions
'
f2: F There was a very good reason for this:, condition.

(iv) in the definition of a secondary quantity from a set"of primary quanti-

ties, xequiredthatallgfunctions(forseparateChoicesofthef.in

each factor F, of the oartesian produtt) must be similar. Hence the

hypotheses of Theorem 4-3.7 wOh].dpnot necessarily-be satisfied (in the case

n!= 2
'
F
1 2

= F" = F) if you were to consider only those "g" functions '

g : h-> f(al) f(a 2)

,

for which the same f has been used in each "factor'. If you retrace the

,proof of Theorem 4-3.7 with this point in mind, you will see where we needed

condition (iv). This does not mean that the...set,of functions g-; B->R
+.

,

defined by-

.

does not, in some sense, correspond to a secondary quantity of dimension 2

in length. Of ourse it does, but (at4present) we,can only conclude that

g 15 -> f ( a )
1

4C "IA

this is so becase they are part of the (possibly larger) set of functions,
. ..

determined by g : ->f (a ). e f (a ) to which Theorem 4-3.7 applies:

. ,

The source of this difficulty lies in the fact that our treatment of

secondary quantities was primarily designed to apply to the case weere-all
,_\

Primary duantities were distinCt, and we only considered the case of non-'

distinct primary quantities as a special case. But,..in practice, it might

well happen that several elements of the domain A of a singleprimary

. quantity are associated wih an element of the domain of a secondary,quantity,

and, in the definition of a secondary measure function, we

to use the same primary function for each of these primary

, This leads (see below) to a simple extension of the notlon
,1,'

348 0
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9quantity, in Which 1.1r choide of functions f
i

6 F
i

is more restricted, but
,

t
,

I 'the clitice of!functions cp As less restricted. (Yoa will recall that, in /
,

considering area functions for square regions,,we were able to avoid this 40
problem'.becaude

2...

Of the congruence ofithe sides of.a
4

square, so that we could

consider the secondary, measure function for square regions withopt using the

cartesian product of the domains of length functions. I.e., we obtainedthe .
, -,, ,

area functions for Square regions ,from -a secondary quantity which was defined

in terms of a single primary huantity, with a single domain element associated

with each domain element of the secondary quantity.).

To clarify this question, we look at an example which, at first sight,

appears to contradict the result of Theorem 4-3.7. (This illustrates the

importance of checking hypotheses.) Most books either ignore this question

of what to do when there is more tharione associated domain elemert from a
,

primary scale, or they' imply that it can always be handled (as we were able

to handle area for rectangles) by the use of cartesian products. The follow-

ing simple example illustrates that this might not always'be the. case.

. it
Example. Suppose that we have a fixed plane, with a coordinate,system, and

-. that 'b is any,,segmentin the plane., Let al be, the, projections of

b on'thd coordinate axes. (It is possible that tone of these might, be a

single point. I, so we give it length ."0" under every length function.

As we saw in Chapter 2, this was a natural (and in a sense, the only reasonable)

way of ,extending#the domain to include single points. This minor-addition is

not signfficant in our eXample.)_7 F ia(fL is the set of length functions

for se erilifklet' us define a new set of functions

G = g
f
(b)= If(al)12 + [f(a

2
)]
2

, f 6 F)

_a
2

1,

a
1
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\ '4.
, 1

I \

.
Then, from our knowledge of geometry, we know that the set G is ijust the ;

.. ----
set of length functions for all segments in the plane. _41\1 particular, G is
-certainly a ratio scale).

4 ) .-, .
i

Let us Put this in the context of the definition of a secondary quantity,

and attempt to handle it by using cartesian products, where 5(b)---= (a1,a2) .

The following diagram will help you to visualize this: j

Al X A2
f x

X R2
+

RI

g

Al and A2 are the sets of segments on the respective coordinate axes, and /

the-set_ofall length_functions,on,,,each.of thege of courge,!.jratioi.

scale. (These scales are'obtained by restricting the domain of F . We use

f , for these restricted functions.) The function ,T isthe same symbols,

'defined by

T (X1,X2) -4 4!17Z

Pere we have a perfectly good secondary scale G , defined by a procedure,

very similar tb that.used in the definition of a secondary measure in terms

of several primary measures. But the function T is certainly not in the

form which Theorem 4-3.7 leads us to expect, so we knOw that something must

be,"wrongfl _careful examination shows that what is'MJ:ssing is that the all

,v1s,
-

in condition (iv) of the definition of a secondary measure has been igndred.

In order to be a secondary measure (as previously described) in F1 and F

(the, length scales on the respective axes) the set' G of all functions
--

8. : ( (r f
2
)8)(b)

.1.

,

must be similar, where the fl and f2 need not 14e the "smile" function.

(By ksame", we mean that they are the" restrictions to Ai A2 , of the same

length function from F It is not hard to shoi directly that the set

cannot belong to a ratio scale (e.g... find two elements bI b2 which have

350 3 '."3
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S

the same value Under one g-function
)

, but not under, another) a fact which we

could also infer indirectly if we were certain that all of the,remaining condi-

tions of TheOrem 4-3.7 were satisfied.

40t

This legVes us with the problem of what to do

the set of functions G is a perfectly good ratio

should be derivable from an appropriate definition

in thW" .gerteF11,

scale, and we feeLthOtait
..

of a secondary quantity.'

In addition, we probably feel that its dime4sion in ;'length" stclibe "1".*.

Secondary Quantities Derived From Several Arguments in a Single Primary

Scale. To keep things reasonably simple, let us consider the situatiorLwhere
4

we have a single primary ratio scale F , which leads (as indicated in the

diagram below) to a set of similar functions. g , which determine a ratio scale

G . (The domain of F is A , each Ai = A , and', of course, each Ri = R
+

Ai x A2 X . X An
in'

Tr R4-

.

g

Each function g is defined by g : b ->(T(Tif)b)(b) . In other words,

an-ordered set (a
1 '

a2 ,
'
an) oil-elements of A is associated with'"

eachelgeni of B , the values f(ai) = xl are "measured", using the same

fE F', and then q(xl , x2 , , xn) is :Icalculated". We are interested

in'discovering what past be,the nature of the functions T , in order that

G should bee ratio 'scale, with the related function (f -,g = p(uf)s)

homogeneous. This question is answered in the following theorem:
,

1

Theoieii14-43;8., With the above:A0tation,Jet T : f734(Tipt) ) and assume
, ------'s

that (TTf)£ is onto. (As before, this condition may be weakened.) If

the functforl-s ,:T(f) are similar , and if r is a.homogeneous mapping,

then cp is-a homogeneous function, URI. ->I1 in the standard sense).

Convesely, if T is homogeneous, then (without the assumption that
.g.-

(TTr)s is onto), the functions T(f) are similar d T ,is homogeneous;

Proof. If the functions T(f)

for, each k e RR , there ext-Sts

are similar and if r is homogeneO then,

a e R , such that r(kf) = ley(f) Hencfr

351354
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I

I

q(kx1
' 4x2 ' , ki'n)

ka (1(xl° ' x2
xn) , so that is is homokeeee4s

of degree a . Theproof of the converse is quite straightforward:

Remarks: .

1. If we apply this result-to our simple example on segment length in the"

1/727
...-

plane, we see that the function p : (x1,X2y -4 xi + x2
2

satisfies

the condition of homogeneity, and that its degree is 1 . 11.4p function

is not, however, bihomogeneous, as' you may easily.verify.

Z. We are'now in a position to giv a general definitibn of "secondary

quantity". ' A secondary quantity i s a set (iFi) ,B ,8 , c) ,

where (Fi) is a finite set of'ratio scales (not necessarily distinct);
8. is a funttidn from B to a cartesian product of the domains of the

scales Fig with the domain of each factor F repdated ji times;
and p is a function,.on the "corresponding" cartesian product

a-
+ + + ' %,.. *

4'p : R
11

x ... x R21. ... x R2 X ... x -Rai X ... x114 -4 R °
:41 '-'2

.

ali
n (9

V
..,

,such that /
- L. .).........-"j--

-, . . .._.......1...W.-;

m : (x11 , ... , xli , x2t ,, ... , x2i
2 !

... , xn1 p'.. ,°xnj 1 ,
, 1,.

. .
--4 c p

1
x
11 , ... , x ) p-(x21 , ... ;

2
x2, ) ... p

n
k.
ni

1 ... , xnjn) ,l
1

e
°

where the 45 are homogeneous (iri the ordinary sense) with degrees

a1 a2
2 a

n
, respectively.

With this general definition of secondary quantity, we can give an
9

unambiguous definition of dimension. The dimension of the secondary'

quantity in the primary scale F , is the sum of the degrees a for
"thote p whOse corresponding F = F . You should theck that this
ideflpition agrees with the definitions given earlier for special cases)

3. If you apply Theorem T-3.8to the case of aiigZl.ar measure inor4ationto
.

iea&uxe, as in of the'Yadian measure°fUnction,

you will see that this construction gives a secondary quantity Of dfMen-

alon-0 in length. The function, ,T was given by (1): ( )..° xl , ;,c.
A..-

(
i

-xlix2) ; this is homoieneo0 ofYegree 0.. It is also bihomogeneous
',' 1

5.3

4

0
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of degree (1,-1) : this means that if we were to use the radian

measure construction, but with length funbtions for arcs and segmentd

which did .not haye to be the Psame", then the set of all secohdary measure

functions obtained would also elon to a ratio scale. This set *contains

the radian measure function ; it is, o course, the full ratio scale
4

which the radtanmeasure function determines.

4. If, in the development of angular measuret we had used a fixed circle,

and set up angular measure functions terms of the arc lengths inter -'

cepted on this fixed circle (or a congrue)nt circle), then the resulting

angular measure stale (as a whole) would have been the iamB, but the

associated homogeneous function from the length scale to the angular

measure scale would then have dimension 1 . (This is gate comparable ,

to our earlier examples swing that homogeneous functions oflifferegt

dimension could be established from the length scale to the ardbscale;

and also from the length scale to the volume scale.)

5. When there_are two ways of looking at the same dimension question by
)

considering iteither in terms of severalarguments in a single'scale

and (standard) homogeneous functions, or in terms of separatt\put equal

scales with a single argument in each scale an' multihomogeneous functions,

then we expect the different definitions of dimension, should

agree. .This is, in fact, the case, and thiswas our motivation for the

'11 "-definition of the dimension of a secondary quantity which we gave (at_

the end of Theorem 4-3.7) for the case ofhe Fi not all different,

,(Recall that we defined the dimension of the secondary guantity,in

to be the sum of the a_ which correspond to. those scales Fi which

were the same as F To avoid complicated notations, we prove the

siplest case of this result; the general case presents no additional

difficuAies.

Theorem 4-3.9. If G is a secondary measure scale defined in terms of the

.9

primary scales F1 ,'F
2 '°

(F
l.

= F
2

= F) as in Theorem 4-3.7, then there
a, a . di

is
°
an associated-giction 0):41V

1'
x
2
) H,tx

1 2
This function is hoto-

,,,
, . , . -- .,,,,,-. .

,geneous-(in. the standard sense) in (x x2) , and, has degree al + a2 !_ii1,47.-
... .,.

and tt is multihomogeneous of degree (a
l'

o 2 ) . ,gence the two definitions
...

. ,
,' .. ,q0

of dimension agree.
.

. .

..--.--

i-

D0

.-

-1 ts.

0 for
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GProof.

$t

/
$.

al
a

.1, kx2) = c(kx2.1 (kx2) 2

a
1
4a

2
Cc
1 2

= ck x
1

.* al4Qt2
k

.
x2)

a .

Hence cp is homogeneouilli the standard sense, Ind has degree al +&21.

, Similarly show that (I) is multihomogeneous of degree, (Oki , a2) so that

the two definitions of limension for the dimension of the secondaryity

in F are,in agreement.

4

1 4
While we hays certainly not exhausted even the elementary study of

dimension in relation to the lestion of primarY and secondary 'quantities,

we have probably covered most of the basic ideas, with particular emphasis

on some of the simple but fundamental ideas whichare usually passed over Ve

lightly. We use these ideas as motivation fortheinext section, in which w

study the genesis, anu the inter-relationships, of ratio4cales, from a-more

$

, mathematical ,standpoint.

4-4 A Mathematical Theory of Ratio Scales

In earlier sections we have studied a nu mber of measurement situations,

both mathematical and empirical, in which the concept of a ratio scale arose
. -

quite naturally: in a variety of situations we found that the set of all

taikasure functions satisfying certain ma thematical, or empirically suggest,

conditions,: satisfied the' requirements of e. ratio scale. LIn_the last section

we studied the empirial/y mOtivatedipotions of primary and secondary quantity,

and we saw that the requirements for the definition of a secondaryltanttty

were such that tbe concept of a secondary quantity implied
ti

(a) the existence of a "secondary,ratio scale;

. (b) 'tlie'existerice of homogeneous functions from the primary scales to

the secondary scale.

In this section we will study ratio scales, and homogeneous functions

on ratio scales, in a Yiore general mathematical context', drawing together and

adding to the results of the last section.

,

As oily a small handfUl of ratio scales are encountered in practie*, you

might thi that the, development of a general mathematical theory,(invol ng.

infinie many scales) is a waste of time. But it IA necessary to do, this

/

.
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if we are to gó beyond the study of special cases. The situation is rather

like that for the scales themselVes: in practice we only use a very small

number of particular length functions, but a theory Of length ust concern

itself with the whole ratio scale of (infinitely many) length functions.

a
In the development of a mathanaticaltheory, the coecepts of primary and

secondary scale will virtually lose their significance: in relation to a

homateneous function their roles are rather like that of domain and range,

the same scale can be the domain of one homogeneous function and t

/ange of anotner. Moreover, all homogeneou(scale functions except those of

dimetsion zero, eve, 1-1, and therefore have inverses. 4For this reason we

Irshall-lw have little Use for the terms "primary quantity" and "secondary quantity",
?krf

but We shall certainly-use the ideas which they have suggested.,

Any'reader who is familiar with the unifying notions of category, morphism,

and functor, will notice familiar ideas, but no attempt has been made to

develop e2theory of ratio scales and dimension in the most abst;ect form.
Or $

GdneratioAMMORtio Scales. As we observed earlier, if A is any

set, and f- any function from .A to R , then there is a unique ratio scale.

"generated" by or 'containing, f . ;This tells us two things: that the class

of all ratio scales is very numerpus; and that a ratio scale is fully Aeter-

mined by any one of the functions which it

the fact that similarityis an equivalence

.from A to R +, and to the fact that each

contain. (This cpiresponds to

relation on the set of £undtions

equivalence clasS of, similar functions

is a ratio scale.) We,Niish to consider various ways in which "new" ratio

scales can be "geneAted" from existing. scales. At the same time, we would

.like the procedure for generating the.new scale to suggest (in a.natural
1

,

way) homogenequs mapp ngs,between the old scales and the new.' Among the, ..-

various procedures which may be used are the
:
following thtee, which were.'

suggested by the discussion in the last section, and which may be combined'
.

-..,-

in'a wide variety of ways:
... .

Post - composition. 'If F = (f : f:A .,.) 11:) is a ratio scale,

.4 ,. .

we may compose each mapping iri the.scale with the same,funtion

-T: R
+

.')R
+

'. For a suitable 'T , this" gives us a new :scale

' (opt : with the same domain as F'.

(ii) Pre-compositione With F as fn (i), if B is anyl
I

set, and

if E. .is any mapping- a B we obtain a
P
new,scale

. (fa. :,f e F) with domaiy B . A simple but impo nt case
/
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fl of this occur when B c: ,A ands : b -) b ; the,neNi scale

;then the se of restricted functions 'B . (This s#uation

is encountered` in "extension of the domain ", considerations,

where wehave the fbnctions f I B and seek 'to axtend,tflem to

a larger domain A , so as to obtain an '"extended" )

Products. If = (fi)' 2 1=1 ', -2, --..:.. , -are ratiO

we can form a "prb'adct scale", which we will denote by4*.,

F1 2_< F2 x, X Fri . (We use the underlined' sMbol

tlnguish the Product scale from the cartesian product of the.

sets Fi .)

Properties of Homogeneous Functions. Before looking le i the above three

methods in.detail, we summarize the main properties of homogeneous functions

on ratio scales.

(i)
;,,,0A........

%

A function I : F --)G from a r.ttio scale F to a ratio

'scale G is a homogeneoud'function, if and only if ihere

exists a e R', such that for every ,..f es F and ..k > 9 /,

l(kf) = OY(f) . .
- -

. ,.

(ii) If a = .0 then 1F i is a "constant" function.
4

If be / 0 , T is .1-1, and its inverse jsr1) . is also a -

homogeneous function, with dimension ,t . That it

- 1
'41m dim '7

(iv) If Yi : F ->G ; and 1.2 : G --)11 are homogeneous functions,
,

. . ..
..

: ,

then 1-
2
1-
1

is a homogeneous fanction,. and .,
.` .

.

dim (1211)!= (dim 12) (dim T1) ..

(v) An automorphism Tt : 11.).F , (11 :.f --)xf 5 id, of course, a

1 homogeneous ftnction, and dim K. =1 .
a

.

(-iri. ' If I" ' I
1 ' 2- '

,_in , and it , 11 , ... , VI , are homo-

geneous functiohs- such that-

m m-1
N6

1
r= (fictional cOMPosi-

-16
-co

'
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then ,the composite functions are homogeneous, and

TT dim y, = TT dim yl
i=i j=1. ."

(vii) With a notation sikilar to (vi) , if twq composite hoicgeneous

functions Y; r and yl Y2 . . Y2 have the
-11-L 1 .

same domain scale, and the same image scale, sand the same

,,-y. dimension, then they differ only by an automorphism c of

the range scale. (We say that such functions are the same

"up to a constant factor%) 1

Formation of New Scales ht Post-Composition. Let. F be a set of functions

with domain A and range in R+ , and let (1): R+ --)R+ . Then if, f (e F)

and (1) are composed, -we not only obtain anew' fkhction IT f : A Rt , but

1, we also obtain, in a natural way, a tapping cpx. F -) F' , where

F2 = {qt : f e F ) , and 0CL : cPf The question:we wish to answer is:

what functions (1) have the 'properties that, if F is a ratio scale, then

F' id also a ratio scale and 1:14 is a homogeneous function? This was

implicitly answered in the last section, but we answer it explicitly in the

following theored: /

Theorem 4-4.1.

(i) With the above notation, F' is' a ratio scale and cl)* is a

homogeneous. .function, if and only if . cl) : C)

> 0 , a./ 0) ; and, in this case, dim 11)* = a

Prof.

(i)

;

= F if and only if a = 1 ; in this case )Kc. is simply
. .

an autqmorphism of F . .

If c > 0 , a / 0 , and c c ' : x --) cxa .1-then .for 'every It e A-

PP* (kf)] (a) . ci) ((kf)(a)) =Ycle ( f ( a ))a = lee( 9 ( f)] (a) -g -.

..,

.-Hence cP* (kf) = ka 9)* ( f ) , and therefore CP*".(k1-15(f)

t k CP* (f) . Thus every two functions in F.i are similar And
4 i -s

. .. .
any -fiinct krt.ifilaii:I1-61. it' to a. fun ti cc' ( f) ,pi"._.31

,

4

,

..

'' 1 V .
- . R ;

also belong.to F' . Thus F' is a ratio scale. .C1;garly
. : 4 1 ''''',f '

e . , e .4
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el)* is a homogeneous function, with dim cp,x = a

The converse is proved as for Theorem 4-3.6. .

(ii) If a -=-1 (p is a similarity transformation of , hence .

9)* (f)= cp f E F , and 9)* is just an automorphism of F .

Conversely, suppose that Ft = F . This means that if f E F

then q)* (f) E F . That is, there exists k g R+ , such that

for every x in the range of some f e F
+)

c x
a = kx . Hence c = k , and a = 1 .

Corollary. Let F be a complete ratio scale. Then, for every a / 0 or 1 ,

the functions ,f and ? (? : a -)(f(a) ]a for every a E A) have the 'same

"unit"; but they do not agree on any other'eleinent of their common domain.

Mire generally, ,if / 0 , thi functions f and c? (c > 0) determine
vot.-

the same equivalence relation (al « a2 if and only if the function has the

same value as a
1

and a
2

) on their common domain; if, in addition,

a / 1 , then they agree onftexactly one equivalence class of domain elements.

(We leave to you the. proof of these statements.)

Remarks;

1. We saw in. Theorem 4-3.4 that if 9* is a hotogeneous function with

' dim 9). = a , then c (p is also a homogeheous function with the same

dimens'i.on a ; anrthat "any two homogeneous functions' frpm F to Ft .

with the same dimension a , must differ by composition with a "conttant"
4st

homogeneous function, c : f -) cf . We.. also observO hat if c > 0 ,
,. II a p 0 , and .cp : x -) XI , then Ft = (cp f : f 6 11 = ((c) )f : f E. i°) ,

%%
because (pf and (c q) ),f = c( (p f) belong to the same ratio scale. In

the consideration of ratio scales which are derived from (or "generated" .

by) other ratio, scales,' we usually want 'to keep in mind not only the _

derived scale, but also the associated homogeneous functions. For this
$.

reason, if Ft = ( (pf) = ((ASP )f) , we might like to adopt the convention

that.the notation .41 denotes the pair of objects consisting of the

ratio scale Ft and the, homogeneous furictiOn el)* : F -->cFt where

(11: c -)cx°6 . However; with (a / 0) and q1 : x , the sets of.
. .

functions ccof ,t f e F) and {Cc q))*f f E F) are the 'same, and it is
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. -

more useful to use the notations 14 , cla , to simply denote these sets

of functions. From the defiffition of set equality, -.1a = ce for every

c >*0 . 'Thus we Jo.not complicate the notation by-trying to include the

homogeneous.function T within it, ;but whenever a homogeneous .function

from F to 14 is implicit in the discussion of a derived scale 14

(particularly in, connection with questions of dimension), it is under-
.

stood that T* f ->ci(for some c > 0) is the implied homogeneous'

function; these homogeneous functions have the same dimension, a , for

all c .

2. It is a simple consequence of the theorem, that Fl = F and th

= lt3' if and only if a = p .

3. We observe that if T : x ->Xa and f E F , then T f = . Hepce

the notation 14 is consistent with the usual usage in the algebra of

real valued functions, where :F4 denotes the function g : a -)(f(a))a

Because we are dealing with)positive-valued functions only, 14 is,well-

defined for every real a ; and if a / 0 , 1a = (ix f E F) =

(ct4 f. E A

4. We have observed that = c14 , if a / 0 . Hence if a / 0 ,
ry

= U (cr) . It is convenient to define F° F U (cF°) =
+

log
+

(cfa :'f e F c E,R+) . FP is the very simple (incomplete)
.

ratio scale, consisting of all constant positive valued functions on A . .

. .

In spite of its apparent tTiviality, we shall find examples of the

pccurrence of such scales in connection with the questiog of "dimensional

constants". 4

5. Notice that we are not saying that the ratio scales la are the only

scales with the same domain A The set of all scales with domain A

is, in'general, vastly larger. The "power" scales 14 ate.justt/those

which are derivedlfrom one Particular scale F b& the process described:
0

If Tt : x -).03E4 T" : x -4 eX13 , we may compose andget

spi x..-4c"(ctia) = c"(0) xa.13 . He4oe we get
.

Theorem 4-4.2. For any ratio scale F , with pi* T" as above,

(1);
( = =

(1p)a

/If. a / 0 , and 14 = G then Gala =-- F

(1a : a R) = (G4 : a

159 2 6'2 ---j*
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(iv). .dim (c)" q) 2 )* = dim cp*" dim ip.)7, . a p .

Proof, This is a'straightforward exercise in the use of exponents.

Remark: The expression 11 has dimension
1

a in F" is frequently used.

This involves the convention that we are really referring to the dimension

of T* , where T : x ->cx
a

fox some c > 0 . Sometimes the statement

"0 has dimension a" is used, but we shaKavoid this form of expression,

which is a hangover from past attempts to associate a dimension.witha scale,
4.rather than with a homogeneous function between scales.

1

A Notational Convention. In the study of ratio sca s the Action x -) xa

arises so frequently that it is convenient to give it a standaM name. In
.7...,

Chapter 1,w useqi .the symbol I-4. to denote the function on It
-i-

-.

i R. . ..
.

,,
We cold use a.dorreSponding notation, 1-4. '::c Ix

a
, but this is rather,

R
4*,

cumbersome. For-the present we leave the domain out of the notat4,,op,,,...am,d.
...

use the abbreviated notation ft : x -41 . The basic properties Of fX. are',
. . -.,

of Ipourse, 0

( ) f i" ' ;

;(ii) e = ft ..-1.41

(iii) if c > 0 , (c7)a cC1f4 .

The " " denotes multiplication of fUnctions;,the- " ° ", denotes composi-.

tion of functions'. We denote (as before) the induced homogeneous functions

from a ratio scale to thederived scale (with the samt domain) by

(Where it is imporiant'f.o distinguish different-hoMbgeneous functions formed'

in thi,s way, we use ; , etc..) With this notation, the basic property

of these induced homogeneous functions-is

(Ic` ° 1(3 )* = 1C4 ° .IC4 iff3

A
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Formation of New Scales la:Pre- Composition. Let F = (f:f :A -,R
+
) be

a ratio scale, and let 6, be a function 6 : B -*A . Then we have 40,-'
i

'A

r
o

Theorem 4-4.3. .-
.

i (i) {fS : f E F) is a ratio scale with domain B ;

(ii) they function b.
*

: F ->" {f5 : f 6 F) ..6
*
F , defined by

4**,
6 (f) = fS , is a homogeneous function;

(iii) : dim S = 1 ;

(iv) (6*F)a = 6*(F) for every a i

4,
Proof. Clearly km) (kf)S = k(f) = ke(f) , f m which (i) - (iii)

follow directly. -(iv) follows from the associativity f.functional composi-

(ef)a = la(fb) (laf)8 = S*( ?)

Remarks:

1. ou _should notice that the homogeneous scale function. S is in the

pposite contravariant to) thePlomain mapping 8 .

yam.
*,

2. WheneVer S a "domain mapping", and we refe'rto the scale 6 (F)

in a situation where a homogeneous scale function is implied, Amiless

-anything is specified to the contrary.it is understood that the homo-

gene6us function 6* is the one involved. Thus if we ever use such an

expressipn as 1 and 6 (F) have the "Same 'dimension'" (we probably

-won =t, bud tither writers do) it is to be clearly understood that this

is only another way of saying tht the dimension of the "natural"
* * -

homogeneous fUnction S : F (F) , is- 1 ,

3. When welsh to distinguish between the homogeneous'functione induct

by S cipil different scales with the same domain, we use notations such
*

as 61 62 etc.

4. If B is the domain of a ratio scale G , and A the domain of a ratio

scale F , a domain function S : B does not generally induce a

homogeneous, scale function from F to G ;.but there are important

situations were such a con ection does not exist: 1440ee tXample 2

below; and the discuseib" aftfie end of this section.)
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CoMhination of Pre-Composition and Post-Combosition. Suppose that

have mappings

c 1-; R+

where F is'a ratio scale withdonainrA and ¢f e F. Then, clearly,

(i) T)*.--765*

so that the diagram below is commutative

t-

5*(F)--Pe(5*(F))-- (5 5 ) *;"*
6

" ,tt

For each fle F , part (iv) of Theorem 4-14.3 1,,s equivalent to

,,e

Lie(f)) = =1aft-(ic:E(f))b = 8*c1('F1)

so that, with a dlightly imprecise notation,
0 44

lab* = ela*

This is more accurately represented in the following commutative diagram

(where we distinguish, different inducedvr, actions by subscripts)
I1.

:

4

Fd

e(F) [0(r)fx
2
e((e)

ft 1

2X

,.



1

.1

The simple "commUtativity" pr9perties (i) and (ii) above, together with

the properties developed earlier for the composition of " ltt ' functions,

are of course just, special cases of general properties associated with the

composition of functions. They are flindamental in the development of mores

complicated relationships among ratio scales.

Example 1. As an example involving pre-composition,:any "extension of domain"

situation may be considered. Assume that a ratio,scale Ft with domain B

hat been obtained, and that it is desired to "extend" this scale to give a

new scale F with some domain A B . The requirements of an "extension"

are that

(i) ° if f' : B 11+ belongs to the ratio scale Ft on B ,

,

then there exists an f(f : A -)R
4-

) such that fIB = f' If (using'
.

the notation of the discussion) '6 -denotes the inclu-

sion mapping (or injection) 6 : 11,4:4A (i.e., b -)b)

then the condition £1B = ft is equivalent to ft = f6 ;

(ii) the set bf all such extensions f shall constitute a ratior"
scale F with domain A . *

These conditions-imply that: , ,§" fio

(iii), ' 6(F) = . [6* f) =.0) = fIB.] (That is, the function

** . inducpd by-the injection 6 is a homogeneod function of

limension 1.);

(iv) if °f1IB IB = ft
'

and f
2 2
1B 7 ft = kft I

'
then f

2
= kf

1
.

More briefly, we can 'write 4.1(is condition

ext(kf') = k ext(f') .

.It is 'easy to verify that if (i) and (iv) are satisfied, then so are the

other conditions. In practice, extft) 'is usually defined for each

ft E Ft .,in such a way that the function fr -,ext ft- is obviously 1-1 ,

and only condition (iv) Leeds to be verified. If you recall the various

examples,of extensions given in Chapters 2 and 3, you will see that condition

(iv) may follow from the distributive property of multiplication over addition,

or it may follow from properties of the least upper bound and the greatest

lower bound.
..

Any scale F , related to a scale Ft by "extension of Ehe domain" as

above, will beealled an extension of Ft.

0.9 6



It -is a trivial matt,e' ,t Verify that, if P= (f) is an exteniia of

1.a ratio scale Ft = (f') , the , the function kb )
-1

: Ft --> F defined by

* -(e)-1 : ft --)ext f! is inverse to b
*

, and (b ).
1

is a homogeneous
*

.

2
function, whose dimension is alto 1 . In a certain sense this correspondence

.

of F and Ft is "natural". In most scientific ,work it is customary to
* .

suppress the functions b ami ing in extension situations (i.e., induced

by,inClusion mappings of the cio ins) and to talk about for example) the .

length scale, and the area scale irrespective of the domain. As the sup-

pressed homogeneous functions ha \e dimension 1, this_does not produce any

errors in dimensional arguments, Provided that it is clearly understood that.
the missingofunctions are the "natural" ones. --

7 ,

Fxample 2. As an example involving pre-composition'and post-composition
)

let p
s

be the set of square regions let A ..be the set of segments, t
I 2

.

8 be the function from a square region in
.

to a side ,(in(in A) and let
. I

/-.v?'

F be the length scale for segmentsj. Then I*kF)---"--F., and_ 8 (I!(F)) = ...-

2/ . / 2/ NN

8(e)e. G is the area scale for suare regions.

Frequently, in scientific wor ti, one encounters a "dimensional formula"

?I`

where, in some sense which'is not usually cOMpletely clear, A stanas for

"area', an& L for "length". If A is interpreted as the area scale for

square regions, say), and L as the length scale (for segments) this formula

would *riot have any clear meaning in our terminology, because the two scales

A and L2 have different domains; and the difference is more rIgnifebant
4

than it would be if one domain were merely an extension of the other: Our

equivalent for this "formula" is

A= e(L2) = b*(I(L))

where the'value of a, oh a-Square region isa segment (or the congruence

class of segments) which is a side qtthe region. Wcould consider A = L
2

,

as an abbreviation. In eiiher form,Atige formula :MR not assert that "amea-
s.f.

has dimension 2 in length": sub atissertion has no meaning except in

relation to a specific homogeneous ion connecting the ,length and area

scales. In:practice the function"un eistood" isithe above function' b I* ,

AS! / A
:is.observation is emphasized*whikh has dimension 2 The importance o

(but not necessacily in our terminology) i better books which deal With,

-.I*.
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measurement, in such statements as "there is no means .flimen7
..,ssiorrs of a physical quantity, until We have also.spectfied sIex of,

measurement with respect to which themensionsare determine"j idgman,

[17,147 dimensiona' exe chalyteristio of miStlades; they-are.!notko racteris-
. ., \ ,

tic of physical quar6ities thiMselVes". (FOcken [3].) Unfortunate not.all
%,..

writerp keepthis
45

point clearly in mind.

°Remarks. Generally speaking, where no confusion can result we
.
shall not

..
2.

distinguish between different ratio scales which are naturally related ?3,frin
inclusion mappings of their domains; (i4e., between a Scale. and its4 e

extelsiona), However, while on the subject-of extensions, let us look at

'the relationships' of length tcales for segments and curves (with domains

As , Ac ; i ; As c Ac) and area scales for squares, rectangles, and polygons'
.

'//r. (with domaiipBs , Br , Bp ; J, : Bs c. Br ; 32 : Br c Bp) , where the

- r

connection between length and area scales is made through the function 6'

which maps, square regions onto their sides, and through the function

I
2

: x . Area functions are denoted by "gtg" , and length functions

by "fts" .

.....11Gr

B

j2

Br

Bs

sl

IF

R

I
2

f
s

A
s

R'

/
Ac

The diagram is' commutative. (Notice that there are ratio scales shown for

[I
2
fc) , with

segments and curves

for squares,

which we have no particular names or use (,e3,-, the scale

domain Ac).) If Fs , Fc , denote the length scales for

respectively and if Gs , Gr, Gp Unotethe area scales

3 5 3 6



; .
rectangles, and polygons respectively, the induced homogeneous functions on

these scales are indicated in the diagram:
-

. i*
2

6*
* °

I il *
Fc .4*---4- Fs -18w-0- -4---041- G- -4.4--0- G -041-1,-,-s- G .

s s . r
, I-)

t ..

All of these homogeneous functions are 1-1 and have in-ves-.

.

.
,.

Products of Ratio Scales... Let Fi° F2 , , Fr; be ratio scales., with

.
domains A.J. , A , , A respectively. Denote functions in Fi by

fi , fait , etc. We shall describe a new scale whose domain is the

cartesian *product of the,,domains Ai .

Let TT Ai x An ; let a = (a1 , a2 , , an) cITAi ;

and let fi c i=1, n . Then the "product" function:,

TT fi
t

= 1..1 X f2 x x fn , defined by

(11-f,: a a, ,
9

(fi(ai) 2(82) , , fn(ani)

maps TT Ai into 1TRi = Ri XR2 X 4- . Rn+1. (Each 11+i = R+ .)

,

Let p. :'TT Ri R+ denote the "multiplication" function which maps

the element (x1 , x2 , ,xn) of TT Ri into the r al-number product

n

x x x . Where no confusion can arise we denote this product by TT xi ,
1 2 n

1=1,

or, more triefly, simply as TT xi,. Thus, *for each element \,a = (a1 a2

, an) sc TTAi , we have (u(lTfi)1(a) = TT (fi(ai)).

The composite functions u(Trfi), TT Ai --4R+ are going to be the

functions of a ratio scale, which we'will denote by F1 X F2 X _ X Fn

with domain TT Ai . But first we make a very important .observation: although

the functions TT Si are all different (i.e.; T4. ti 1 Tlfl if, for at least

one fi 9) this is not true for the composite functions ii.(11'fi)

. iv&
To see this, consider the simple case,where Then, clearly,"the

function 1.1(2f1 X.f2) and the function '1.1.(f1 X 2f2) agree on every element.

Of Al X A2 ;,_fience as func ons from .A1 X A2 R+ ;they are the same.

function;,A little thought will show you that every function in the set

366
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Y F
1.

x F
2

X ....)1: F
n

=((µ( : f
1

c Fi
i

swill have infinitely many designa-

tions or "representationRes". This is one of
?
the reasons why we used the

notation " X " to distinguish the product spalp4frpmAhe much larger

Cartesian product of these

To see the general sittation let f
i

and let fl = kifi . (We use the notation

with an automorphism of kRi , , rather

ft c (1c..-1"2, ... , n)

representing composlaon

than the "scalar product",,kf
i

-it --
because it makes the diagram below easier to follow.) Then the4elationship

4

of the functio p(TTf ) and p(TTft) = p(TT(Kf )) is-shown in the following

diagram, which is easily show,P to be commutative:

Hen, We have

TTR
i

11

as 'TT Rif V

p(TTKfi) = Trki (p(TTfi)) j

nif

, .

so that uSTTifi)= p(TTfi) if and only if Trki = 1 . This45roperty deter-

mines an 'equivalence' relation (functional equality) on the set of bincLional

representations. When we refer to the seol. functions, (41Tf4)) we are
...,

t '
, .

not concerned, of course, with any particular representation for each function

ix the set.°

We 'can now prove.Oite simply that the set of functions (1.4TIfil) is a

ratio scale.

Theorem 4-4.4.

Fl 21 F2 2< = TTfi) : ,fi

. with domain TTAi .
. .

367 3

Y is a ratio-scale



If is .a fixed

function p( TIfi)

functiOn 'in each
.

F
j
(j '0- 'So'q., then every

,
Y ,.l...

4n F
1

5 F
2

x
n

X Fri ,can be written,
-.3.

uniquely as

n ?,) = 11(7!

(In other words, we

exactly office, if we

which the "factors"

scalesd)

9

X ... X f X ft X f
-1-

X ... X f )
$ i--,1 1 11 n

.

get each function in the "product" scale

'consider only these representations in

are fixed in all but one of the "factor"

Proof.

(i) If p( ITfi) and I( 1.1( (Tcifi)) are any two (not

necessari137 different) functions in F
1
X F X X Fn

F

,
then, from the above, p( rIf!) = Tiki (p( TTfi)) , so that the

two functionalece similar. On the other%nand, k(p(Tifi))!L.

p(ITfi) , then' kl, , knis any

can be

functioArtimilar to

- -

chosen in infinitely many

For each choice we get the same

ways so that -TTki =

,

function p(TI(iifi)) and

this function is .k(p(TTf4)) . Hence Fi X P12 X !.. x Pn.

is a: ratio scale. .

The proof of this useful result is now quite straightforward,*

and it is left for you:to complete for 'yourself. (This

I,, result is closely related to Theored 4-3.7i and the fact that,,
.1 - .

' -the choice's in the proof did not affect the result.)

The ratio

and...each

.

'

scale F X F X ... X .F it- called 'the product of the scales

9

1 2 n

Fiproduci is called a. factor Of the'product0

tight.Aoe better to

see ) It is

e

or simply.to 1T Ft

3'se,ts /,

. .

,
say R. prOduct, 'but :the order is not really significant:

, . n
lomet Biles convenient) to( abbreviate the notation to,

.
Trit .1

..-

1
,
'

.
igi

ut we must not confuse this

-..

with ,the cares* nprproduct of .
____ _

/

....

'
',

The following' heorem gives tome of the formal zle1atiaonships between the

three different procedures which we h av e described for generating ratio scales.
,.. ,.1.

., * '-.1 ':,t

/ -368 : . .
.
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you should draw the relevant diagrams; with "parallel" diagrams. indicating
the behavior for a single domain element. As you will find, the diagram's,
are commutative; and the prods are either trtvial,' or depend on well-known
properties of products and powers of positive real numbers.

Theorem 1,,-4e 5. . For each i(1=1, 2 , ..."I n) let Fi be a ratio scale; let:
ai be a real number; 2.";e. A

1
bs the 'domain of Pc; and let .Si be a

function from a Set Bi to Ai . Then
-

'

(TT rif = Tif`i

(i.)
411114

h(6.Fi = (n )* (11F.)

'p -
The Order of Terms in the Product. Let. F

1
(i=1; 2 , , be ratio.

scales, and Tfl'i and 7 'Fi be.the products, formed $y using two'odifferent
orders; (i.e., one .order is a plikiemutat;on, of the oth' . Then, the permutation
gives a natural"1-1 correspondence (*.a homogenecius' f ction of dimension 1)

'connecting TTFi and Tr"'Fi T convenient ."luppress" this dimension

I function, and "identi the scales TTF, TT'F, . .That is,We treat
L

the prodUct4 as a commutative ,agsociative op' ration on ratioiscales:

Homogeneous Functions Related to

iP
°du cts ,_af .Ra tio Scales. In.ou r dis-

. cussion of post - composition and pretcmposition we 'emphasized that we were not
e

only in'terestfed in obtaining new, scal s, but we were Also interested in hobo- . ,!,..

-..geneous functions re ating the new a dr the old-,scales'. The sit etion is stmt.
lar (but more compli ted), with respect to. proclucts.Of stales. het 'IT F be -,,,- . _,.. ...

the product of ratio scales Fi -, i=1, 2 ,. ... , n. .,,,!Then, aS wa.. lleye 3 alieady 0
,,, -

seen, if' wEl 'conSideifixed functiins fa{ (S':(S:../. i) in all but one of the ack.o's,
5 1 o` P -0 . i ,_. 0then 'e oh function u( TT fi.) in TT F can be uniquely sexpidg,td as lAt-rr ±1) ,i

where -f-4,. ,for each j' it i . It is natursHito..exa;ine the. resulting '-
- .-

. t l'
.:,d

o .

I

. oo oo _.,,,furiction
'7'74 ' .. r/

o o ,

'W o. 9..''Fi

defined by =pi , to see if '
ivial o verify that this IA a

cov, ot.

eouS 'rung on,
_

men on 1;function

try



O

'o

.

but you'should bear in mind that, pi depends on the choices Of

.

For each choice of the f we will get a "projection'.` p
i

, but of ,course

this correspondence of choices and projectiOns is not,1-1. Moreover, s ales all

projections have dimension 1, we knbw (from Theorem 4-3.4) that,any two of

them can lather, only by a "constant", a fact which we could also verify

,,directly. -Thus, from a dimensional point of,view, they are not significantly

different.

Each such projectiAn p. has an inverse pi , which is alse:a homa,
..;

geneous funct,ion with dimension 1. This function (which might be called an

"injection") can be defined directly by

p
i

fi -)u(3
1

X X f X fi x x fn) .

14 course p
-1

also depends on the choice of fj(j / i) ; but'different

'functiOnsp-iican differ at mos.19, by composition.with a "constant". (1.e.,

4.410t

by n automorphism of ..(TTFi +) .)

Another way in which a relationship can be establishe'd between factbr

and-product scales is by pretcomposition with a suitable mapping of the

respective domains. With the notation used earlier, let Fi(i=1, 2, )

be ratio Scales with domains A
i '

abd let a2 a3 an be fixed

.elements of the domains A2 respectTvely. (We are fixi4g .a,.

in all domain factors except the first to:simply notation: of course. any

other factor than_the first could beisingledout.) Ilet 8 be the function

definePb a -4(a:- -a a. , . Then 8
_

1 , 1:'. 2

. deterilidnes a ratio. 6 (TTF.) and a homogeneous function 8 4roe

"TM onto this scale. We hall show that 8 (TTF,) is actually F , and
/

4,,,_ 4E. 1

; 4E i:
that '8 s one of the projections onto F

1
, as-defined earlier. 4 4

.. ' ,....
. . . t..,.

1.

.11 : Theorem 4-4.6.

,(i) e(TTF ) = F
1

.,-

(ii) . 8 is the projection,deter;,ined by those ftnctionS i;

. n
f which have a2,

"' '
a
n

as

.

units..



. Proof:,

(1)

00,

1

. _
Let f2 , n be the (unique) furiction's in F2

t
F respeCtivelYr, which'have a2 , an as units.

'
'from the definition of 6, for any al E Al lend any

11(TP.fi) E

.(O*(µ(1fi))/(ai) 2A(Trfi)(6(si))1

= Pt(frfil)(ai ' itdj;

=, p.((fl X f2. X X in)(ai

= fi
1
( a

1
) '

where fi
1

p.1111/4 X
2

4 s*(IrFi)

onto.

n

. "
41.41

of

Then,

isthe. unique function in F1 such that µ(TT) =

X ... Hence (p.(TT fi)) = fi ; so that

C . It i easy to show that -6 101 -1 and

(ii) The fact that is the projection determined by the

functions (,j /'1) follows immediately from tlib definition

of projections given earlier.

Remark: The above theorem is closely connected with the example (which we

have frequently mentioned) of 4. dimens on'l function from the length scale

Afor segments,osay), to the area scal (41r rectangles, ;ay . For, if F is k. ,
this length scale and G the area .sca.1.2, ,r:lith domains A and B respective-

ly a fixed egment a determines a fixed length function f , which ha,s a
,

.1

. ,

as unit. ,E A , and let 61 : a -);(a , a-) -:-.Let B , and let
..

8 :

2
where -a-1 a2., are the siaes of b (in an arbitrarily

selected order). Then, for each f E F 11(f X I') 52 is an area function

for B . That its, there is an area fhnbtion. g E G which Makes the following.

diagram comfautative: (C4mmutativity of the top "triangle" is trivial;, for *,

the loier ntriangltn; this-was proved in Section 3-5.) f

.,

It

;

c



M

.

6

V.

f x + ,A x A

Y

For "fixed a (and hence f- ) _the set of all
.

functions (p.tf X f),) is
*

61 both ofF X P . .nence there, are induced, homogeneous functions

dipension 1 ,

Ea'ch

, *

_
61 a

27F 41141---1 ,F x F -4.-1.4., G.

* * -1

I

functionlis 1-1 and hence a
2
(6

1
) is homogeneous function of dithen-

sion 1 from F 'onto G . This is of course, the homogeneous function
A

of Section 3-5, with a = a .i)

110.

Pr ducts of Powers of Ratio Scales. If F1 , F2 , ...: , Fn are ratio

scales, and a , a2 , ... , an are real numbers, we can form the product1
.,

',0' r 1
or' a a

2,
an , OS , 4

. eiscale ITry1 6. Il 2.5 F2 2..< "... x nn . If I.?. is a projection,
, 1.

1a.
1

ai. -1
1

P, :

1.
F%

I

-,,Fi '1
' we can compose th injeClionTi

a
ition I*

4

and- obtain

With the

4

. ;ai , pi ai
Fi *4-777-0- TT

- 43

"power" fuhe-

where the numhers ilf parentheses' (on the diagram) denote the dimensions
. .

'

'a
The composit0function pil I*

/

of the Corresporiaing homogeReous :functions.

has 'dimedsion

ai

1TTF . This

'dimension et

mean, that the

, and it ia'uniquely ,ete ned 'up to an automorphIsm of
4

,t a
property is sometimes expriesed in the statement u TT Fii has

in ,Fi" , but this only makee sense if interpreted to

above homogeneous function has .dimension- 2Xi .t

1372
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If a = a , (1=1"2, ...,n) , theni as we have seen., (TTFi)l = TT .

In this case TTF can also be mapped homogeneously in'bo TI by first
'

injecting it into TIP. and following this bytfie appropriate function

from 11.1.1. to (TTF:)a = TTY . This composite homogeneous function also

has di;eosAih In fact, for appropriate choiCes of the injections in-

s. volved, we get a commutative diagram
-'

.F

TTFi (TTFIY)a r iti

The Relationship of Powers and Products of Ratio Scales. "If F is a

ratio scale, we have now defined ratioscales F x P , and F2 .. It is-natural.'..

. ,

to ask whether there is any simple connection between thesirscales: Clearly
0,

they cannot be the same, because if the domain of F is A ,then thejdomain
.

of F X .F is A X A , while the domain of F2 is A . .

In Theorem 4-4.6 aboVe we saw one way of mapping a "factor" scaleinto
..,

a "product" scale. This Fethod involved'fixed choices of elements in all
i. .

.
.

but one of the domains. But when we are considering the cartesian ,product
4$ ,

of a ratio scale with itself, there is a simple and natural way to map the
, .

domain of the''scale into the cartesian product Of the domain with itself

without makin arbitrary,ehoices4 this import t mapping (which has many

es in mathe tics) is galled the diagonal map ing. Thistis the funtion

k. .

1, I

.defined by I.:: a ---; (a,a). . J
-\'---1:'

,.
''-.:

(Clearly the. idea can be extended .the case of .any finite,fitutiber, n
..- ..

equal factors, ,'but we shaXi keep sithings lilaby-exapOJdzig,only the caae

n = 2 .). . "..---; ....-

of

4 ,



-r
p

If tg(fl. x f's) is any mapping.,8 in F X F theri g(fl X f")6 maps

A into 11511. Henoe, by pre-composition, determines a new ratio scale
,

ttx?) , whose domain is A , as inillicated in the diagram

A"..".... .

A
:- .... . -- -.... , -

v :4- ',
. -........ +

4k A x A R
+
x R

+
.,,

ft x f" V .

".

p.(ft x f")6. .

.Argft -- b f _ ..,.

It is natural to ask whether this scale has any simple connectio n with the
. ,

scale F . In, order to answer this question, we first prove et-simple but
ir
useful theorem concerning the "representations" of a map g(ft X f") from

the scale F X F . (Recall that thid map cad be Written in infinitely many

different ways.)

Theorem4

(i) Given any function_ µ(f2 x f") in P X F there

. .f E F such that

1i( ft X f") ,g( f, X f) . '

is
t
a unique

a

(In other eachT'unction in the product has a unique

"diagorialq reprasentation.)

Different elements df F X*F have different representations

i the form .11(f < f) .

v-fundtion a :1F-FXF definecby /Y:

is a homogeneous functiOnwith dimension 2.

, . .

to each (al,a2) EA x A, 40 ffl)4(a a )=,[f(a )] Z;(a )] ;-1, 2 1 2 %

A 'does not depend on the represent tiOnof the element g(f f")
\:1 '-', ; :,'' 4 Ai, ,-

;-4243'

E. F, suchttatfi,

g(f x f). F 11( t x f") ,,tifen"for( ) -sAx? ,
.......,. .. ,

tgf X '0103; 4(8)1-= [f!,(6)1(f":(04,, VoAhat 0
e, ..

9

f-

of F x F . Hence If there is

f(e)
[f1(031/2(fp 1:3134,.

374 :3771.



a

Define a functioil f on A by this equation. Th functions

ft f" be;ong to F , hence, for, some k > f" = kft
.

so that f- = k
1/2

ft 9nd hence f E F . (This is, of course,

just a special case -of the general result (cf. Exercise 2-4.16)

that any homogeneouS function of degree 1 in a set of ratio

scale functionsalso belongs.to the same scale; the fkinction

f ftf' 7 ,has degree 1.) The uniqueness of. f is easily

shoWn. . -
1:4

This is trivial:

(iii) From (i)and (ii), 71 is 1-1 and onto. For any f E F -and

any .k E R+ ,' +Z(kf) 1.1.(1cf X kf) = k2$.,.(f x f) = k2E(f), so

that is homogeneOus, with dimension 2.

a

Remark:. The above theorem clearly- extends to the case where there are n
/-

equal factors in the cartesian product,iin wpich case. the function needed

for the "diagdnal° representation is simply the nth root of the' product

of the functions in any representation of an element, of the cartesian product.
$

In 'this case the corresponding-homogeneous functiol ha4 dimension), n .

;
We are now in a position'to angwer the question' aboye: "How, is the

scale ,6 (F )4F) related to the scale F ?" If we use' tlie. que "diagonal

repreentation" for every eleinerit of F X' F , and consider the following

diagr.am, then the answer is almost qbviourt: .

'1

110

A
f

R+

\ ?

\,

"A X A -----im.R+ X
f x f

The missing function, which makes,,eithe dikgram commutative," is the function

: x x2 ; with this 'unction, we have I2f = $.1(f X f) , so that

T.

At' tr * I ^
; t '

(F X"i') . We incorporate' t portant result in the following/
theorem. 4 I

4 t
g5. 7



Theorem 4- o -

(p x p) =
'

6* : ,F F, 7> F2 1S 'aehomWneous function
'S., , 1.tt , l

11, , .. X...! / .,

4.., ,

The homogenetiuf.fufictions-6*, nd
s . %k` '1 Lt.-%

in the.following-commutative diagram, in whi
- . ... ,.... .

Sf"the homogeneous scale funqtions are shown

after the namts of fiteVnctions:-.

Remarks In mOst54i,eritific work (in which the dimensions 4f relationships ./

a"2 )

PeX F

1*2(2)
.4*------11141. F2

are relateelas

the dimensions-

i parenthese4,

betweenkacales-Adre often the main consideration) the-notation F X F is not
°

used, and the notation V is frequently used both for---the scale which we

have designated as F? (and whose domain is. A) and also for the scale which4
we haire designated as F X F (and whose domain is A X A) Perhaps conven-

tions such as this are needed if notation is to be kept reasonably simple,-

'tut in °Ur treatmtnt it is important to be aware of,the distinction.0;0#

&ample. We Velum again to the question of t relationship Of the length

and area scales, involving. he homogeneous fun ikons D , de Let 7 be

the lenstA scale (tar segmd ts, say) with dame A , let GI, be( the area
0

scale for rectangular regions (with domain B ) , and let G
s

be the area
i

scale. for square reg.pns (with domain ,Bs) . ,Then the following diagraniis

.commutative:

-376 ' 379

/



a

p.

1

IP
.

.p.

5 At
e 3 .4____

,

r s
4.

0

+
---AP. A

411

V f X f + +A A X

" (The mtppings are the usual ones; 6 maps a rectangular region onto an ordered

pair of sides. We could, of course, use a corresponding functioafrom A X A
$

to Br , defineA by taking any element (pair of segments) in lk.X A., and

DAPPing this onto any rectangle with aides congruent to al a2 .)

The corresponding homogeneous, functions are shown'in the following

diagram, whose commutati ity follows from'the various results proved above.
*

(The notation is standar : but recall that we_uge' 61 62 to indicate the

different homogeneous functions induced by the same function, a4-.) The product,

of the dimensions alongsmy two "function paths" joining two scales must

be the same, because of commutativity: the composite of homogeneous functions

is a homogeneous function whosdiMen-sion is the product of those of the
7,

separate ' unctions; the dimension of a homogeneous function is uniquely
,

determined by the function; and commutativity:simply says that the composite
. .

functions corresponding to different path are, in fact, tjre sage Tuaction.

Thiii"equality of dimensions" is a use

but lot-sufficient, condition-for the c
I - I

checking device:) it

ativity of diagrams

have homogeneous functions cOnnecting.ratio scales.

44.

4 ,

, la

s a necessary, *N.

in unich

I

we ,



r

F

0.

i2) ss F2-

(1)

(21 8*(1)

1Tk(1)
F X F 411

1 1

gt.

G

Theorems it-4.7 afid 4-4.8 can be generalized toostiow e relationship of. ..,,
A - ' -: 7I

e x i,--and f- .tf, We -state the results int-the fo. owing theorem, leaving
the details /(and the extension to the' case of. ii. > 2 factors) to you.

3 ... .'
Theorem 4-4.9: =

(1)' ; is a wet' *defined rati:o
L',.'

)...
4 ..1,,. ...: , ,,, a .

(ii) The firrk,j-4.1.On . ,61]. : F --) r X'/i': , :defined by di :,. 1;:(1°6 X P.)
...-

,. .3- ., .
, 1

is a homog eous funct-ibn ,with dimension a 0+ (3 ..:.
% t :::-,' .,

1 (iii) If a .4- p /* then every functIpti- 11-(1"3. X..-F2), in,.. e2s IP

can be uniquely expressed in the 4'.0prci hk >e,,,i3 )-, .w.herp;,
..,-,-;.:,....,..., .

, i 1 If.44, ....S. 's

I.

rfl.CC If +.f3 . ...'"!: ''''. .X.- 1..,t,' t , ':' i ,
.. .

r Ii 4 V
(iv) With a' denoting, as usual, :the. diago 'on ihe '8mgd.n,

«L

,. .... -.. ... ...:.

.. ...,A ' ..'
.,

The follow-1111g di gram (in whichdimensibIlizii;are shown' in
k., ..1z . v.t,:,'parentheses) is commutative:

;':: ,

O
a'

378
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(a.4. 0.)

of

F +f3 (a +

-X F

'13

oN

If a. + p. / 0 the homogeneous functions 1.4(.4 and 61 have

inverses, but if a + 0 = 0 they are 'constant" functions.

Remark: We'point out the 'relevance of this theorem for the relationship of

linear and angular measures. Assume that F is the length scale (on6a

domain A which includes at least;'Sei'Men,,,,land circular arcs), and that G
'.(1,.:0''F:r

is the angulhr measure scale for sidplk angles. The diagonal map
O;. ,".

e-- \t`,-, "'''
.

A.: F-4I x F
-si

0, : f -,p(f X f
.;1

)),,lb a homogeneous function with dimension,

zero. If b' e f (the domain of G)" ig'-'.6$62.ngleland (iii.l4a,) are the
?,,_

,
, . -. . tii

intercepted arc and the radius of some fixed Circle with center at the vertex

,of the angle, then the function E. : b -3 (a
l'

a
2

) induces a homogeneous
c . .

function 8 : F X F3" -,G of dimension 1. The radian measure function

.

. is thefunction b
-*

[p(f X f
-1A

; this is the same for every f . Thus

we'have the (brivl_ally) commutative diagram

'

in which .1) is defined d to e the 41-dimensional..taFosite

Thistresultpis t e source f the common statedent "angular measure has

dime ion zero i length". .'

404,'

* -
tion 8 A .

le

1

1



2")

,.
However, it is posslIi-le o mapthe length scale into the angular measure

scale by means of h$N6o ctions with non -zero dimension. For example,. , 'Tr. i,ls

we may use a, "fixe cycle'
,:, ..

oie'radius is congruent to a fixed segment,
".._ , .,..,.. ... .

, "ce length function I' ). For any (simple)
.

a which i's the Unit o

angle b , wd theil hakigNg.,(a , a) e A l!k A . function in F X F
-1

.1

can be uniquely represented in theform

p(f it,ls an angular measure functip for G , find-the resulting

b. F x4F1.-44t has diMension 1. If we cOmposOhis,with the injection
4

.

(from F. .toIPX F') which is determined by f ,.we get. e. `,
4

F F X F-"

",
p.(f X f

1)
the Composite function

and The composite'fun-ction a = S i has dimension' 1. (Intuitiyeli, a is the

function determined when angular measures are set, up by "fixing" the circle,

and using arc length as the angular measure.)

A Non-Commutative Diagram. We have encountered so many commutative dia-

grams, that you might be inclined to think that commutativity will hold just

about any'time that we can exhibit functional relationships on'a diagram,'

THis is"Ve y far from being the cas , and the statement that'a diagram is

commutative is usually a nontrivial statement.

As an" ample of a non-commutativ diagram, let us consider a

relationshi of the length and area s ales. Let F be the lengtseale (
segments wa do) and G the area scale for rectangles. Then we have seen-

th there' re homogeneous functions,relating the length scale F its
,

"square -" the product F6R F ,'and the area scale G . We can indicate ,

AP,th se.in the diagram

-

)

t

.k r



t

0

,

Le ,

46 { . ...
where, 82. is the function which Maps

I
a square b onto its side a 8

.2

.

.t, - . *
maps- b --) (a,a) ,',and -IS the injecton determined by a fixed. '17 e F .,, ,,

. . .
As all' functions shoWn are 1 -3, . alp. hence have inverses,' all

rcomposite funcl-, ,., . - . ,, .: .. e r o
..

tibns are 1-1 h'omogeneous functions. Tilut the diagram is distinctly non- .

r, t
commutative, asNyou, can easily check. (Of Colirs.e, we. deliberately coraplic,ted-

rafttnrs by roduicing ? ; El!a we saw earlier the oRmpoSitelfW.ietion .4>'
4., 0 .0 4:

. 8 I-- is eaual to of t where t : f ---) (f f) -., In 'thisi.fOrm theljp. .011-- - '-'1°1 * - -"- 2,
, ,

. ....
eommutativity would be more obvious, bt.gausvA And. ::;:re clearly not the '',4. .

........?,...a.
pame funct^) One method ophecking

L
sibi 4 of commutativity is

7,..1...
to-put in the dimensions: a necessary co ommutativity is that- the--/ I
prodUcts of dimensions along different

a 1,1

on 1* fib" should,V the same. ,,,

Our purpose-in iritroduc -tYcierSimple' and overworked example again, .
1

... ,,. i., .

was not just int order to warn you'that all- diagrams are not, sutomsticakly _..
- .. . ,.._

commutatie. Let us re d w the dia ramAs follows, 'simplifying byousing the_...-,
* ,- 2 --'

Tact that 8 G. ,.--- b

*
I-.

1-
and showiklg the ditensions:

%.

ot.

2 1 *4' ',

4(1'
G..

A
I ,

IP'. 4

G

.r

.

1r1,"-$-.,,
,

, ! ,

,2-
t



If we now ask whether, there is:a functi n p from G to G which makes the

diagram Commutative,-the answer is obviously "yes" : Because all !Unctions

shown are 1-1, we can simply define p to be the composite, funcAion

* -1. . 1T ik0 kb ) , and,the diagram is trivially commutative. Moreover, as all

of the original functions are homogeneous functions, so is the composite

1"function p , and its dimension is . has, of course, dimension t.)
)

Thus we'have madeva' very important discovery, which emphasizes thetimpossibility

of assigning a dimension to.a ratio scale itself: namely, (that there are'1

homogeneous functiqns, with dimension / 1, from a'scale to itself.

Once we have seen tflis#example, we can easily construct others. In fact,

it is a simple matter to show that every ratio scale can be mopped 1-1 onto

itself by a homogeneous function of any dimension a / 0 . If F is a ratio

scale, tg'g'set of'all such functions includes, of course, the automorphisms

of (F , , whiCh all'have dimension 1.

To See the general,ca'se, let f be any fixed element of F , let a / 0 ,

' p.(T) = c7

and let c > Q. Define . p F -) F by (k7) kap
) cka f

=Theorem 4-4.10.

(i) For eery choice'oe c and f ;0 is a homogeneous, f).0.ction

with dimension a.

(ii) If a. then every such p has a "fixed point"; i.e.), a

function f2 such that p(f2) = f2 .

Proof.

(i) This is a'direct consequence of the relevant definitions.

-(ii) If f' = k7 is a fixed point, then af =aid.") =c1j1';,,
. ,

-

...,

1 . ,

-5-

'whence k
1

-lee = c , and k = c14ma 'WithWth this k ,
.

.i .

.
1

.

'''' = ki.,,, is easily ,zhoWn= to be. a fixed point.'
-"-,,,.-.,

. :

.

RemArks:

1. In the case 8f our length/area eiaMple, it is easy to,fAnd,the fixed

point--in at you can almost guess what tt must be. (Recall that

t.)



a or 2 , s7that there will be fixed point.) If 7" the

filed length function (corresponding, in the original for of the

example, to a fixed segment a ) then you can easily verify that the

fixed po4t of the homogeneous function p described above (see last

diagram) On the area scale, is 62(u(T X7)].

F2. Back id the Previous section we pointed out that a homogeneous functionPrevious

was not d termined by its value on a'single"scale tunction--we needed

two valu in order td detertirie it completely. What wehave been

discussing above is clearly directly related to this earlier observation:

the homogeneolls functions (see last diagram) 6
2
6 and 6

2
i have the

same value on f ,.but they are otherwise completely different.

3. The above length/area example; wla Theorem 4-4.10, are relevant to the

sometimes confusing question Of,"dimenslonaf constants". We shall have
- -

more to say about this question iria later section.

The Use of Standard Homogeneous Functions. At the end 'Of the previous

section we gave a very simple example (using Pythagoras' Theorem) which indi-

cated that functions which are homogeneous in the standard sense (i.e.,, which

are not necessailly multihomogeneous) can sometimes be4used in the constructal

P
;''oB 'Iratio-Scales- Moreover, in the =measurement of "secondary quantities" it is .

4vI.
te conceivable that several domain elements of one of the "primary quanti-

'

tiee -might be associated (togethe with a single domain element of

secondary quantity, and that we might actually encounter a situation where

such a homogeneous function is used.

.

Assume that we have a ddhafn mapping B -)TrAi:, (where the, Ai are not

all distinct. ClesAaY ye can bring-together those "factors" Ai for-which

A
i
= A

0 '
and get -

TT ( Ai) X ( AiY
2 A =A

0
Ajt\

This suggests thatyenight*nsiderseparat'ely those ratio scales on

)7 A which a4re'4gerierat'ed" by the 'Ise Of functions which, area homogeneous

i
=A'

in the,ordinarysenee. To keep things reasonably simplelet us consider the

of\two equal "factorsT; i.e., let 7: be $ ratio scale with domain A',
+ . + 4,

and let h:R
+
XR -311 be a homogeneous function of degree a ; with a # 0 .

. r.a.r

3813 8 6
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That is h(bx
1

cx 2) =. cal(x
1

x2) for all c > 0 , and all

. (x
1

x2) e R+ X R+ .

We- observe first,, that every such homogeouv'function can be uniquely

written as h = 16 : x ,,-- and h is homo.geneous of 'degree L.

(Define 17 by 1.1 : x [h(x)11/C4 , prove that homogeneous 'of degree 1,

and show that h = lh . ) S ,

Now let T e F and consider the set H = (h(f x : f E F) 'r It is

quite straightforward to verify that H is a ratio scale, and that if H is

similarly defined using h instead of h , then H is also a ratio scale, and

= H . The domain of each of these scales is X A , so it IA natuxal to

' look for relationships between the scales F and other scalds (such as

F X F) which also have AOMain A X A,. 'We might, fol. example, ask whether '

- . ..

1 . re and F X F are the same scale. If h : (X1, x2) --) xi x2 (which is.
.

homogeneous of degree 2) hen, clearly, H = e = F X F ; but if we take

'. h : ( x
1 '

x2), ), 1;:712--1 "+' x2 (W 41.4 also hoMogeneous of degree 2 ). and compare

,

values of h(f X f) d p(f X f) onnon-diagonal domain elements in

. A X A ,' we can quickly dispose of the qqes..tion asked,: in general!, F X F .and

Te are not the same scale. On the other hand) using the same .example, we .

1 4
, ' r ,-;2 $find that, for every a e A h(f X f)(a,a) = -21.f(a).1 .,.= 2p(f X f)(a,a) .

Its fact, if We 1ettriCt ourselves to the set of diagonal elements only, we
. .

° find that ,

4 '
. .'

.

. %

(i) the. sets of restricted mappings from F X F and ri2 each ,

,.
,,,.. -fora ratio soal d on the'dizigonal of A X A as domain;'

..,

. : .

. .'(ii) these restrict scales are, in 'fact the same scale. (Of
.

.,
: course the xestrictionS of - h(f X f) and pcf X f) to the

diagonal. of A X,.A are not the same function, but the fact -

that they differ by the constant factor "2" means that they

t belong
------

to °the same scale.)-----4... - .-. . ,, , , II? ,,, #

In other words, -i'or this particular 4omtigifigeitis function h , there, is a
.

ratio, scale on the diagonal of`' A X A , such that F X F -and e (which have
. - ... . ,

/ . z '.the sate domain A X A) are, each 'extensions 'of this "atagonal" scale,
.

,

44
. ,

This sitIlatibVhbld8 OneralIy. To.....seeLthil,14.., h be. an homogeneous
. + + , ,-.,., 1

function of degree 2 on R X R ) and let p be any ratid scale^with domain
'

I



A . Then for every diagpnal element '(a,a) e A X'A. , h(t x f)(a,a) =

h(f(a) , f(a)) = [f(a)]2 b(1,1) (from the homogeneity of h).; while

u(f x f)(a,a) = .Gf.(4)2 . Thus'therestricted functions h(f x,f) and -
µ(f X f) ,on the diagonal of A X A , differ by the Constant factor' h(1,1)

,

nd hence they belong .to the same scale, whose domain Is the diagonal of

A X A .
.

i
A .

the 'diagonal mapping A : a -,(a,a) on A , relates the iCareNkF x F
07 t.1

to , and it also/relates the scale lig to Fg . (MoreEg

( F X F) = Fg ; A-*() = F .) MOreover the functions -7A f -> µ(f X f) ;

and 42 ' f ->h (f X f) are homogeneous, and the following diagram is

commutative:

fr e

.

TO avoid cluttering the diagram, we have not distinguished in notation

between the various functions induced by A , nor have 1-labelled the hori -

zOntal "pdwer" functions. The\upper rectangles of the diagram represent the

(established) connnutativity of thj precomposition (0 functions (with"

= CO and the power functions. The commutativity of the lower rectangles

is similar. And the c:Ommutativity of the middle rectangles follow from the
. ,

fact that tl;te horizontal la functions are homogeneous kunctionsof the

388,



0

---, .relevant dimensions: e.g., I [FA1,1)f] = (hk1,1)] 2 I.2(f)
. Thus the

only commutativity that really needs to be checked is the relation
q .

6,;) Z2 = [11(1,1)]2

which yowcan verify directly.

These results can be generalized to the situation where there are any

finite number of"primary quantities",,and.where the "secondary quantity"

is determined from a finite number of domain elements for each "primary

quantity".

t0 The Duality of Units and Functions. If F. is a ratip scale, withdb-main

° A',.and f F , then, as we have seen earlier, therelation defined by:

a .. a
2

if and only if f(a
1
) = t(a2) , is an equivalence relation On'A

°'0 'As you may easily verify, this relation depends only on F , ana riot on" f

et 2, denote the resulting set of equivalence classes. Then each. f e Fi

establishes a 1-1 correspondence of X: and R if onlY'if F is at

complete scale. Assume that F 3s complete, and define an addition),

"scalar" multiplicationthy positive real. nuMbers
)

for elements -ef X
)
'by

.

,

(i)
1 s
+/Z

2
= a3

'

where a3 is the unique class such that

f(Zi) f(Z2) = fry for each f e F ;

\.1

(ii) Ai = a2 , where Z.2 is the unive class such that

,.
f(a2) = cf(;1) for each f e F .

--..

It is a trivial matter to verify that this addition is associative and

commutative, that the scalar multiplication is doubly distributive (i4e., *

(
Fl

+ c
2
)Z = c

1
Z + e2 A , and c{Z

1
+ a2) = A

1
+ cZ

2
)',and that it is as;dbia7

.
,

. ...

i e inthe sense that (c1c2)a =ci(c2a) . An,order can be defined in
:
A in.

.0

the obvious way. In other,words I -is an ordered abeliai semigrouly.under
1 7

.
O., , %, ,

addition; and, with the scalar multiplication, it 'has the linear structure
+ . .

of an R - semimodule. ,Ihus.Ar any complete ratio pcale, the.equivalence ,

classes have a structure just like that which we were able to define directly,

i(i.e'.. Before establishing'the ratio scale of lengthfiihctions) on tlie set f
's''"

,
'-'; . ..

congruence classes of geometric segments. If the,ra.tio scale,is not complet 1
..)4

r ' .
we have a corresponding, but "incomplete " structure on the pet of equivalence" .

. ,

..
classes (of the domain.

. 386 3 89
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In much elementary work dealing with measurement, measure functions 71.re

established and named in termt of their "units".w Sometimes thp unit is thought

5,-at a single element of the domain, and sometimes as the eqIvalence class

w4cli contains that element; (i.e., whith is-xuniquely determined.by tlik.

element). We shall contl.nue to regarda unit as an equivalence class of domadm°

elements, so that the unit of the function f e F is (a : a , = 1) 4

a, 'natural correspondence

have units. The follow

,provided that this set is notempV. This establishes

between fdnctions and units,":1'or tlioNifUnctZons which

ing resUltis immediate:

Theorem 4- 4.11.. The natural correspondence of fr ictiohs_ and units 4.-s a 1-1

. correspondence if and only if the ratio scale is complete.

.

We remind you that, when ,F is A Complete scale, the structures of F

-' and 7: are similar (both are ordered
tl

semimodules) but the correspondence

of functidris and units is *not structure preserving-function. Illparficular,
t. 0. 1E-->f then; ka<--> - f ; , and '6..24> f2 , thenif a

f
1
f
2

< ra ".2 if and only if. f2 < ; and "E1.2<--> . As we pointed1 fl +f2

with the/notibn of dual space in linear

(with a simple' generalization of the notion

out earlier;if 4Ou are familiar

algebra, you will recognize that

,of duality asapplied to vector spaces) the R
+

- s e m i m o d u l e
y r
- L F , + , R ) is ,A,, J

t.

dual o R') ; and there is a natural 1-1 correspondence frtM
° ,a 4- ; R +) ,114 dual space; 97? s(F + R

+
) .

the case of complete ratio scales, much of what we have developed

concerning the operations on, and the relationships between ratio scales can

be developet dually in terms of-the structure -of the correspendlng sets of

uhits. eThe main advantage in working with:functions rather than with units-,

is that we can hake adiantage of the well-developed. mathematical theory)df-

function compo ition,"and the algebra ofreal-valUed functions. A second':
.,

advantage is that we can deal easily vith incomplete, as well aswith Complete

io scale is an ordered R +. emimodule tkether.orikt the "domain"scales': a

is closed un opera.V.ons of addition

-hay, no ihtentiqD.of inteptetine:all

lgguage of "unitet.and the structure of'

to look at a faticuiar'situatiOns.

and scalar multiplieation.

dr previous work in terms of the.

the domain
'
but it is instruCtl:Ve

Before doing this; we 'makeakimportant obser4atiOn, As,we have seen,
,

i4.° F ls a rot .o scale with.domain'.A ,;'we can use the 'ratio Scale 'F td
-, : .. . ."' . , i

' ..
'

..A4
- *.. ...

.. -
387
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obtain an equivalence relation on A 7, and tip obtain an operatio of addition

and an operation of scalar miltipi'Cation for the set IA of epivalence

classes. ( A need not b4 closed under either operation.) If G is another
,

.
,

ratio scale which also has Somain A , then G also determine6 an equivalence
Aeb

relation on A. ,. and appropriate operations: A is not necessary that these
, -

agree with those which F determines. In the particular case wfiere.
.

G = i76 , and a f 0 , it is ,easy to prove that ,the equivalence relations
, .

# ,
,

)

determinfdby 1' and G air the game, Nt the additidn">trid thetscalar

mulbiplication are It the same 'unless a = 1 .

.

. %

0

,otp a .
.t.

'I
'

0.' , Units and Hom erieous Functions 'n the oAscussion which follows, all !
'-.

ratio scales are d'ssume . tol be complete, anq -hence the set of domain classes is

closed under ddditicin andescalar multiplication. Let F and G be complete, *.
. .

rtib.sca:les, wfth. domains A' and B , and Sets of units (i.e., equivalencb '

classes of domain elements) 1 : t respectively. Let y be a 11omogeneous
::

function; Y : F -, G . That ts, there exists d E R , Aeh that for every ' .

.

4 f j P and every, k 'E R+ , Y(kf)- = leY(f) . Clearly, using the 1-L gorres-
,

.

pondence.of functions and units, r determines a "corilsponding" mapping of

unite, 'Denote- this by Y : A -41 . We'can examine the relationship of 57

r . ..

to the,-structures of 1 and V If f<---->11 , then kfiC--->2"- Z ; ticl'if . .
k

, ,./ ,
. .

-,Y(f)E-->t = TM , then ,r(kf) .= ler(f)4E- 1-1-,t '= 7(1 .4) . That is c

ka 4 IS
'..' 4

e

'4
'e

4.

1
But th. set of all numbers k

-- (for all 'k' is just R . Therefore 4
a .

y is also homogeneou.,,of degree ; i.e., it satisfies a similar homogeneity

condition to I . The converse is easily showy, hence
,

.I.I

, A

,.. .
...

. -

, Theorem,474.12.
--

(i) Let I -: A -4
.
B be a unit functidn, add let Y ":F -4 G be

..

the dual, funceien on the corresponding .ratio scalds. Thcn

I is homogeneous if-and only if i is homogeneous.
---

(ii) The dimension of a homogeneous scale mapping is the same, as
- . 4 , .

the, dimension 'of the associated (dual) hqmogeneous unit.

mapping: , . . 4

-, . ,,;-,

.
.:. .

We can apply this result to the seedy of .those homogeneous functions on

)
1 . , - //'

rati scales which are induced by domain mappings. Let -F and G be --
.

, . . .

.

. -

. 9 ,

JIAIDlete scales with domains A and B respectively, and let 8 : A

,388 ^
3 :3 1



-. ..
aM . '

4 .
Then, without any conditions on 5 , we always have an induced'ratio -scale

*
et 5 (F) .(not necessari17,complete) and a homogeneous function of dimensio- n .1, '4

5
*. ,

1 : F -) 5
*
(F) . If 5 induc.ea homogeneous unit mapping from i to- X ),

then it is- natural to 'look for .a relationship between 6 (F) and G .. .
..I , - e

Clearly, if 5 is to iladuce.such a mapping, then, 5 must map equivalent

.(ds determined ty G) elements tin' B into equivalent '(as detexmined by F)
, .

elements in ii ; (i.e., b bt implies 5(b) ... 5(b4)).. Assirte this property,"'
. ,

and that 5'."indruces a homogeneous unit. mapping 7 : T3 -41 of degree a '.
nen, T induces a, homogeneous scale function 5.(5 : G 29 F) of dimension_,_-

,
,,. .a . It Follows that the composite,furrction 6

*
6, : G -) 6

*
,LF) i6 homogeneous

. 4 .. - . , ) *
with dimension a . Moreover the ratio scales G and $5 (P') have the same

4 , .. *
domain B , so it i,s no,tinreasonab,,le to suspect a relationship of 5 (F)

-,,, ,

and GP! . It is a simple matter to yerifS4 directly that' if g E G , and
, . L .

,

5**)',,,.."1 E , then fox every., b E B ,,g (b).= [g(b)ja I. (f6)(b) . That"'
a . % .

is 13 and , f6 are the same function.. Hence -the follOwingdiagram-kg
-*

commutative: -ative:
. .

g

'T

.
..

ii,,,,;-_,:::....., , ....-- .1.......,"-...:.--4,\, '
' 4 g =

* , ek* '.'It follows that ,gtx = S Lf)*"... :Hen e we get .4,1s.-
.

., . .

Theorem '4-4.13. With the above notation,, if 5 : B.-) induces a hoMogeneous

. unit mapping E : B --)X , of dimenstic2p a ,, then *(F) = Ga , and
. the following diagram is commutative. \.,

...'.*

a

54.-0.)

.

tr.

or

.r

389 j 9 2
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Example 1. Probably the simplest example of this situation occurs in the

relationship of the length scale (.F with domain A) for 'segments and the

area scale (G , ,with domain B) for square regions. In this case 5 is

the function whidh maps a square b onto its side a.: Clearly this induces

a ma,pping "-E' th the property that T(A) = 8(t)., so that

-8 and '5* are homogeneous with dimension
2

and we have 5
*
(F) = G1

S/2

.
,

irom the general properties of 5 , this means that 8 *(r)t = (.S * (F)]2 = G ,

as was shown barlier. The homogeneous function' 5, is, of course, the

inverse .of the "standard" function r :.F G , (with dimension 2) which we
-

introduced in Section 3-5.,

Example 2. Theorem 4-4.13 is directly related to Theorem 4-4.9. For, if

F is any ratio scat Wit11,d9Aadin A , then I x P, has domain A x A ,

an1 (as you should verify') diagonal mapping A a (at,a) on the domains
. 0'ot

'induces,* homOgeneous unit mapping , of degree Or -rirfafri,the units of F to th

' units of it x P . (I. e. , E (k*E1.) = ka4 "E (a). ) If we gall the corres-
4

ponding: (dual), homogeneous, scale mapping A (A* : F -->FCx x FS) then Theorem
. . , _cy _A

4-.4.13 tells us (cf. Theorem 4-4.9(1v)) that A.*.(11"" X r ) = /4-14 , and that ,
/P the f llowing diagram is comm4ative:

,

.,
.

.

1 , ,
You can easily verify direct that A,,(f) = p.(f`'x f(3) , and therefore the

' homogeneous function a, is t same as the furiction which we_denoted by

in Theorem

- :

,
Example 1. (Cf. Theorem 4-4.6) Another type of domain mapping which we made

,,use of earlier, was the mapping

$
(81' 82 '

390 c,
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iwhere , F.
1

( = 1 , 2 , . . , 4) is a ratio scale witli domain Ai ,-and the

element :J..
J
(j / 1) is a-fixed domain element in

easilYyrrify that if TT Ai

S induces a

A. . Again you may .4

is regarded as the domain of the scale lfi F. 411.,Ifien
'0

homogeneous unit mapping,

. .

units of n F,
1

. It follows that if

of dimension, al , from the units of F to the

* denotes the corresponding homo-

0

geneous scale function of dimension a
1 '

and if S is, as usual, the 1 ,

homogeneous scale function induced by'the pre-composition mapping 6 , then

, a 1
)

N'

(from 4om Theorem -.13) 8
*k

rrF. = F 11 , and the following diagram is
-- i

.

commutative:

0

.

Secondary Quantities Whose Measurement Involves Several Elements in the

Same Domain. In the measurement of secondary quantities, it seemed desirable

to include the possibility that more than one
.

domain element (ok a particular

primary-scale) -.might. be associated with .each domain element' of the secondary .

.
'scale; and, in that case, we .saw that we could use a it anction on) rrR

i
which

was merely homogeneous in the ordinary sense; (i.e., not necessarily multi-

homogeneous). 'A question which you might well have asked was whether this

,sort of generality was ever needed, or whether the same decondary scale might

not be 'obtained ftom7a different; domain mapping,: in which only One doigin

element from each primary domain is.used, with the consequence tilet the .

+.1

correspondang,,fUnctionon TrIllmust be mmatihomogenebus; some ea-
,/

stant multiple ofa product oflpowers). The following example shows that

with fairly general assumptions, thiS is possible, at least in principle.
r R,

391 9
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a

Example.. Consitder the simple case of a stomplete ratio scale F, with domain

-A , and" a homogeneous function h It X .12+ > R+ of degree a (a , 0) ,

such that the scale H f) : f E F) (with domain A X A) -is
complete._ Then the corresponding-scale H = (h(f x f) : E F) (where

h = hlia)' is also complete, and-

,o, Let,. ,f0 E Ft, and define 5 : A X A--> A such that f0(6(a1 a2) =

17(f0 X :f0)(ai , a2) for eveiy (al , a2) s A X A There is', of ocou.s`e,,

a high degree of arbitrariness in the choice of 5(a
1

a
2
) but each set of

choices makes the following diagram commutative:, -e

f
0
X f0

0

Ms
+

pi R, X R

h

i It
,

\is easy o prove . .

gi.\ ti.``
.

.
(i) , this diag2;am remains commutative if f6

f e F ;

is% replaced by any

(ii) 5 ,induce a homogeneous unit function 6 (of degree 1) .

,on the set of units of H , and a corresponding homogeneous

scale'fune-tion 54 F ;,

*.

5 o(,F).= H ;

(±V)
'

e =,to*T1,;..t.
I t P

(v) : l'!/ = r = (5*F?-= e( f)
.

, .
.

It follows that if B is the domain of the secondary quantity, and if

'5, : b > (a as
. 4. Z '

.,..

.'

1 1"

.
5
2
:b>a=5ta,

quantl.ties "(F 11) F ,=N3 , -52 9 ICC) give
,

the same secondary scale
/ and each has the. same dimensin. tt). in .the.

.._

-, primary scale F . Thus in a ce.:tain sense these seoondaty quantities are/ /
.

3,
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"eqUivalene. This does 'not mean that it is always practically possible to

dispense with multiple domain elemepts and ordinary homogeneous functions

h , but, in principle, it is possible to do so.

As a rather trivial (but concrete example \of this, consider the ratio

scale on the domain!f rectangles which takes th pair of adjacent sides

a2. ,.measures their "lengths" = f(a, ) , x2'. f(a2) , under each

lehgt?-4nctibfi f , and uses the homogeneous function h (x1 , x2) -+.*X1
2 +.x2 .

(Intuitively, the functions iri this scale assign -td each rectangle

the sum of the "areas" of tliesquares on its sides.) In this case the domain

mapping 5 : A X A ->A , which maps the pair of sides (al, a 2). onto the

diagonal a of the rectangle, determin'es a homogeneous .uhit function; and'
.,2 .,2

* the'fadt that p.-dOr,,- eveur-4-A-4.-.1,4(s) ',.;_[;( a = [ f ( )'1 + f( a2 ) is,

of course, Pythagoras: 'Theorem.

414 .

Links With Other Parts. of Mathematics. In the present section we have
- ,

explored the construction of "new' ratio scales' by the formation} of "powers\z_
,N 0..'.- . - .

4,, -"15-y, the formation of "products"; and by pre-composition with domain _mappings to-
.i. t , - . ,

yield) roughly speErng, "similar scales but with dil,erent domains "., In
../-

...

developing. these-consruaionsx our approach was quite intuitivef in the sense\,

. that we followed closely the sequence, of steps which was _suggested by the
. ')

.:- 'physical notion of "secondary quantity". We now plan to show you that these

constrAftons are Closely related to some of the basic constructions of modern
. r

f

ear and niult- inear algebra, and to natural generalizations of these ideas,' :,,

,....., 'to homogeneottS Cand multihomogeneous funCtions.

We .have already pointed out that a ratio scale has a "linear structure ":
, \ i

, that isj 'it ha; an addition operation, and a scalar product operation (by
v... -. .

. gpositive real numbers); and these operations are related 'to One another like
-. P'...' _ ,

the corresiconding. operations in vector spaces and ring modules,,the Akin .

difference being -tat the ratio scale is dny a semigroup under its addition

operation. We called this type of structujize ap R+-semimodUle.
. / ..in

,

e,:i We also saw that the domain has (or can.be given) a corresponding "dpal"
ift

.

structure 'onsthe set of "units" (i.e. i--the. set of equivalence Classed of .
%,11011

' ,^ . .1 ; 1 i . , , ' . 1

.010ta i A itcp*n S :'underthe, Igulvalpnce relatiOn which the scale detfrtlines).
_.,,___.

If the rat1-0- scale is complete, this dual structure is also "complete" in
./914

the sense that.the system of "units1' is ce d under the operations of
't,' .

!. addit'ion'
;

and scalar multiplication ,of "unIts ; that id the "unit" structure
7 .0

iS qlso an R
*
qPPIO-POdU, le.* '' , .,
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a. f

The Rroduct weration which we defined for ratio scales is naturally

related to
\
he so-called "tensor product" of- linear spaces. This product'''

4.

operation bn the set of all linear spaces over the same scalar domain (e.g.;

a i*Ing:'oApa, field) is connected 'with older ideas'concernirig tensors; it has
.

become very iipdrtant in modern algebra andlotopology. ,./If F and G are

R
v.
-semimodules e.g.; ratio scales) it isa simple matter to generalize the

,
.

standard tensor product construction (see; for example; [7]; 3rd edition ;

1965) so' as to give a tensor produCt operation for tlye , R
+
-semimtdules F4

;leading
. ,*.I''

and G ; leading to the tensor product Of F and G . We denote this by

the usual F 0 6 f

' ; There are several equivallbt .0ays.of defining this tenso0r product. Fbr

example; the definition given in [7] for vector spaces canbe directly

generalized as 'folldWs:

If F and G. are R±-'semimadules; denote b y B(F fR)
set of all bilinear functlons from F X0O. to,, R ,. It is easy to show .

that this set is also an 'R -semimodule under the'natural'operations

of addition of functions and scalar multiplicatiop of functions by

:positive real numbers. The tensor product, Fci5 G , is now defined

to be the R -semimodule which is the dual space of B(F , G ; R
+

)

lint the usual sense of linear algebra. [That is; F(D G is the
.

,

space of lingar functibns (or fUnctionals1 f'o. B(F ;-G ; R+) to)

+
R A

The standard procedure for defining a natural mapping ofp,vector space

into the dual of its dual; can be generalized o define a natal mapping

,

from F X G (qarAsian product) to `.F 0.0 G : If (f g) e. F X G define'

00 : FL X G f(p G

J.

.,

,1,

(f g ;\,;*

. '

.

rf0 g B(F ;G ; 11+) .-e:
,:,*-- .v' ..,... .--...

. id the linear functional on B(F , G ; R
+

) , which 'is, defined by

f N
' f® g 1? ---? b k f ; g )

r 1
, , :'

..

l' : ,

a
..

. . .
,

for each bilinear function' b E ag., G ; R
+)

.

...'w

.0.

It can be proved Viet is also a-aliriear-fil:nction. We refer to

g as the element of the tensor product which is determined by f and

g . The functiOn w is, of course, not 1-1.

394,0
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The tensor product can be defined in other ways, leadingo "tensor

products" which' are natipally isomorphic to the one which we 117ave-defined.

One common procedure defines the tensor product of F and G to be the
+-semimodule

gdnerated s mbols f 0 g (f E F g E G) , subject to
.°

.

' the relations,

(f
1
+ f )0 g =

1
g + f g ;

1f®
(g1 g2) f gl f

$2

(kf)0 g = f 0 kg .

44

The tensor product of F and G is naturally isomorphic to the product,

which 1,fevhave defined fOr ratio scales, under the 1-1

correspondence

.
J : f ®g H 1.1cfX-4,

°

=frftere f 0 g denotes the element of the tensor product' which na turally

determined f and g . The reason for this ,is quite 'simple, and relates
-

to the'motivation for th'e tensor product construction in relation to bilinear

(and multfilinear)

'The. function

defined by

144

p : FXG XG

,
,

.1-

p (f g) -> p.(,,f X g)

,

ll
., .

.:
- .. ,

is easily- seen' to be bilinear; the tensor product FO d,: is a. "uaiyersal % -
_, /

,'

space" for all bilinear functions on P X cr in, tbosenle4t t any such bi- .

. , i , . . 10,..-,

linear function (such as p ) can be "factored" through , g ,,,ias the
.

a
c poSite of the tiiinat:fiinction ® , ann. linear' fu i ion-15;Tbus 'there,

.

.exist a linear function 1t, i

'',

,15

4 4:
b'

I

0 . * . . v ' 4
. which makes 'the'lifollowing 'diagram commutative::

1
. VI.

_,..-

y F 0) G

. atr

F G

XG
ov

/
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VeVos--

The function j is easily verified to be 121, so 'chat j is a.linear iso- *

morphism of the ,R -semimodues F ® G and F G . The essential distinction /

between F OG and F x G is that G is the result'of a formal con- ' '

struction on F and G , which depends only on the fact that F- and G

are R
+
-semithodules and does_not depend on the fact thd44tde elements of F

and are functions; on the-other hand, in the construction of FX-G

we made use of the fact that-the elkents of 'I' and G were functions,
,

to describe related funct Oriis as elements of F X G . Thus, while F X G
. \

is, essentially; the tensor product:of F and G , we have in addition an

',interpretation for the elements of F x G ,
.

\if F' and G ar9 complete ratio' we can establ' h th
.

morphism of F e) G and F'x G in another way. In this case F and G ',

+, +,
deterMine associated/domain structures. (7 , + , R

+)
; (T3 , 4, , R ) which are

. e

R
+
-seraimOules, and F and G are, of course, the respective sets of linear

...*'

functionAls.on :2 and 1 . Thai is,, F = A 1 and. G = B j

denotes, as usual, the duafspaee. In this case the prodUet'sc

is e iso-

'can b'e shown (directlyYto,ite the space
.

function& from 72 x to R . Hence,

10 = (F X 02. follows from the
. a

A

algebra; that

ere "*"

F x

(an .R
+
-qemimodule) of all bilinear

from the defl.bition of tensor product,

baeic duality theorem of linear

(X0 (P A G)*'2.. G

Q' 4a%

But it is a standard theorem (easily proved) in tensor product theoryy that '

t" I%

\ there is a naturai,isomorphism

. (2 WI)* - r 0 1g:

Renee

,The tehSo$' pNod

,..64 of course, be-
.

ingly extendea th
. .

F arid

;

F G B = F 0,G

ct,operatiin,and'the product operation for ratio scales

teraed, a,nd all of the aboe results can be correspond-
,'

Ohtiori to multilidear function's.
..... e4

are complete.ratio'scale6 with domaind, A and, B

then 't rod 'Scale F x G determines a "unit" structure in its dotairi
.

A x B fo ows from the above discussion that this structure is, in

essence, thei,tenso4 product of the structures_ determined in 2 and
. A

Becauae duality we can interpret the familiar" L ,_A ,M

'4'etc.,.usecl_IY_Ugign_tists either asp representing the domain structUre, or as

496
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representing the corresponding ratio scale structure; and, in either c se, a .

1product" such as LT is naturally isomorphic to the corresponding tensor
, .

,-*oduct L 0 T,
-1

% N'i

,

This should prompt you to 'ask; What about the ""T1" ? Does t is have

I a --interpretatioin as a "power" of T , whether ,T is regarded as re resenting
.,

.,

. . .
.either a domain strutture ,tor.the corresponding scale structure) or in general,

for any R -semimodule? /The answer tp this question is,"yes". We n discussc ..'
the 'whale question of "powers" in relation to homogeneous and mutt hoMogeneous

functions (and corresponding "generalized tensor products") mucINI we dis-

cussed the relationship of tensor products to linear and multili -ar font- '

tslons.

a starting point for such,a discussion, we point out that if F -is

complete ra io scale with domain 'A , and with a corresponding "domain
\ ,

structureft
+

+)
then, for any a E R the power scale ft which

we defined,. arlier, is if is regarded-as the domain jaSt the set

homogeneou .functions of degree a .from ,Z to. R
+

In general, the set of

all htmogeneous functions of fixed degree on any R
+
-seraiModule is easily'

,,
.

shown to be an R
+.

-semimodule, whose-operations are, of coarse, ordinary
. ,

functional addition and scalar multiplication. The fact that we were 'bile-...-
:

to define the concept of "homogeneous function" (of'any.degree),for ratio
.1iscales and their domains, depended strongly on properties of R

+,
;' however,

N
whenever we have-a linear space F on width a suitAble concept of h7mogeneous,

.

function can be defined, the set H
a
(F) of homogeneous fanctions of degree

a is a linear spaCe(under the pal operations, addition and
dFscalar multiplication). If 7, ./S,,,,5: ratio scale, the dual,Space fc(F)] //

qe,,.. st , , ,

is naturally isomorphic to the scale which we have already designated-as

14 . It is therefoye c^onvelpt to designate [H:x(F)1* by ft , and rt

to, these spees as :'gene lized powers". .

Generalized power and tensor products can, of course, bec/om net.

Moreover it is relatiVelY easy to define,a Sort of "generalized t nsor

product": Por R
+
-semiModules F

1
and F2 we define F

/

2

to be the daal sreof the space of bihomogeneoud function oi" degree-

(al, a2) from 'T1 x F2 to R+. If Fi and. F,
c

are r tio scales, %here,

i
.;

c12is a natural isomorphism of F
1

r 0 F land F, F . If

(al ;
.

a
2

)
2 . 1

,..
--r2

,
,

F
1

and g
2 are complete ratio scales with associa ed domain structures

.
,.,

t
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ar

//
. .

and 1
2 '

then F
1

0 F
2

is naturally isomorphic to the "power-

1 ? 2
.

al: a2, .
.

product" F1 X-. F2, ; and this is just the, space of bihomogeneous functions

of ,degree- (a1 012) on 11 X 12 .

/4

rr

'
. _

There are many interesting relationships among the various operations
, -

which yeave sketched above. In the case.of ratio scales the situation is

especially.simple,,becamse of the fact that,we are dealing with the simples

pOssible kind of R
+
-semimodule, one Which is'"i:dimensional" in a lines

sense. Thus some of the results stated above cannot be directly gene ized.

'

We do not intend to pursue these ideas any further in this book. Our

only reason for even mentioning them was to yshow you that the constructions
4 .

which we.appeared to invent in response to the motivation of measurement

ideas are, in reality, just special cases of some very geneea/ types. of

r̂onst ruction on linear spspaces`. And,these.constructionst(whether applied to

the ratio, scales or to the corresponding domain' structures) seem to provide

the best abstract framework in which tointerpret.ihe frequently mysteribus,

Symbolic operations of the physical sciences. For examp1,e, the manipulation
4,

of ".unitp" whioli usually accompanies calculations Af the values of "deAved"

quantities when the °units". are changed in the "fundamental" quantities, can

be interpreted intems of the algebraic properties of tensor product's and [

their generalizations, and in terms of the conventions (isomorphisms) by

means of which we nwmally relate the tensor products to the derived scales.

Thus (to'take'a very simpleI 'example) assume that the area scale is related in

the usual way to the tensor product of the length scale with itself, so that

-(with-"ft"-and "in" denoting domain classes in the length scale, and "ft2",

"in2" , domain classes in the area scale), ft <---> ft 0 ft ; in H in 0 in ;

etc. Then

10 ft
2
<--->10 (ft OD ft)

= 10 [(12 in) 0 (12 in)]*

VA0 (in 0 in)

E> 14-40 in
2

This is a reasonable place to-end this very long'section.

the various opeLtions,onTratio Scales_wesan generate an enorm

of scales: Which particular scales are significant in
f .r

_measurement, and what are the signi.Ficant relationships between

By combining

ous variety

empiricalrelation to

O
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f
d ,scales

,
will, in general, be suggested by empirical "evidence. This is not a

Is .

question that, can be answered.in the abstract.

4-5 Formulas, Dimensions, an411elated TopicS.
f , 0

,'- -Tn-Section 4-3 we saw how the notion of a-"secondary quantilyf.. implied
.

.. ......,......d. -9..3 .,

the existence of a set;of similar "measure" functions onthe,domain of the

functions. "secondary quantity", and that this set Of functions determIned'a unique

ratio scale. We also saw that, with the additional assumption of a monotoni-
..-

city (or, alternately, continuity) condition, the secondary scale had to be

related in a rather specific way to the primary scales involved in its

description. This led, in Section 4-4'to the study of those ratio scales
4 "e

which could be derived from other ratio scales by.the procedures which were

suggested by the relationship of "p ry" and "Secondary" quantities, and

to the study Of homogeneous function t,etweet ratioscales. In.spite of the
,-....-,-

fact that only a few-fhr3y simple basic 'ideas were involved, it became quite
.,

. compliOaIed to-keep detailed track f the various scales and homogeneous ,-
, .

functions; and it is fairly clear t art if we'are,to make ...any practioad use of

these ideas inmore complicated it tions, we. should try.to -find a-way of
.

ffrasping,t1-e-essentaals, without g tting bogged dowiLin detAils. Fbreunateiy1

this is not too difficult frOm,a i ..thematical point of view, but, of. course,

in scientific situations, the ass

empirical evidence.

ptions made will have to be justified by.

,

.

'In the following discussion twill be useftil to makeuse Of simple
.

physipel examples, as well as ex: ples frbm mathematics:" We therefore need

to introduce some additional ideas concerning physical "quantities". In7.

partichNarh.i6Ariail:tAlt'tO OnSider'-&-hbtions_of.mass;,and time- nterv'ad

. ff.

Which, together-with length, are gederally taken as the "primary",qllantities.-.

from :which the various "secondary" quantities involved in classical
: _

77-;-Newtonian), mechanics (area, volume,,densi(y, force, velocity, etc..):Eire
, I

c.

rived. You will find these ideas discussed in [2] (and,:of course, 4

.idny other books on mechanics and pSYsicS). From. our point of view, we have

4to make Certain basic assumptions. Thee are in effect,, that each Of these

"quantities" has a domain; that, corresp nding tzeach "quantity", there-is j'"

tVeet of functions from the relevant domain to the positive reels; and that

each set of functions i8 a ratio scale. These functions are established by

measurement operations, find different op jrations might lead, to the Same

ratio scale. It is sometimes argued that identical scales should be
4.con-

sidered to be different'if they are obtained by different measurement procedures,

39 4 02



but this would create considerable difficulties from the mathematicil point

of" view: a ratio scale for empiriCal meagurement would then have to be

--defined not merely as a set of fUrIctions, but as a set of functions together

with a 4early defined empirical process (a.set of operational procedures)

which "generates" the function; and such a procesS, even if.it could be
:0,

completely and unambiguously defined, is notian.idea that is readily susceptible

to mathemat,cal,treatient. Our definition df secondary quantity in Section 4-3

takes care of some of these problems, but of course a secondary quantity, as

we have defined it, is net a ratio scale: it merely determines onel--;K-

Derived Scales From a Less - Detailed Standpoint. We reca,1l the earlier, dis-

cussion of secondary, or derived scales. Assume that F1 , F? , F n

are different ratio scales,,with domains 'Ai ,A2 , An respectively.

Let B be a set of. "objects"; and suppose that tp each element of 'B there

is associateaim-a unique Way a C011ectioh of
s
Objets from the domains, .

(It is not necessaty ttlat there be exactly one object from each domain;
_

*'we do rat insist that the assliliated set of objects belong tO the simpl

cartesiari prckuct TT A.,..of,the domeans .)
I

Let f..'E F ...; n).
. i

''T.et4hedomaiff-elemenis.inthe&1 be "measured" by the,respeCtive f

and let the values be combined in some well-defined way to give a positive

real number. If this is done for each b E B , we obtain 4 function (g, 'say
2 ,r,*c

° from B to, R
+

. -Clearly this function depends on a number of things, .

including

the rule S (which could be expressed as.a function on B

with values in a:Suitable domain) by which a finite number of

1
, , ,domain elements A. ,a! ,from'each A

i
(1=1, 2, n)

1

are associated, with each b E B ;

(ii) the choiceof f. E Fi , (1=1, 2, n) ; -

the rule p for combining the-measuremsnts f

° ^

1 1
,

*** '°"'"1' 2,f.(a!) , nY .to give a function

"p ! TT R+ -, R+ E. .(We do' not want to be MOre specific,here

, - ooncernii this function.) qt

-,-;.-. ,-,..
this

, ..
4 ---------'''"'xaxfcz

Under suitable assumptioAs,

sections, all such functions g

unique ratio scale G which is

8 and p ) to the scales F i .

f Ii.A;;11/4

which we examined in detail in the precediri

are similar, and hence they determine a z.4

---/ '1,
related in a specific way (depending

In this case the function I

14.00 A n
,

;4.'5



At

dOtesian product of the sets F (not on the product scale

1

defineeby: 1.: W. f

1 31,'

f2

if k
1

, k2 , ...,fin

uniglie real numbers a.
1

N'

: (F1 X F2 X ...x n) ->G

,fn) -*g,,multihomogeneous.

Are any positIve real numbers, then there exist

That. is,

, such that for all choices
a

....1.
.

.

' 1 1 (Y1.1.1 ':k2f2 ' ' knfn) '-'.3.

l

.
Ifs, 11 is multihomogeneous, the ratio-scale G is

of k1
k2

ah
k
n

g

said to have dimension

k
n

ai in (i=1,2,...,. n):, With rest &t o the rules
1/4

6 and cl) . If

5 is Tingle valued in ch Ai ci.e., 6(b) e T1 Ai) then G is, of course,a .

the scale .6 Ti F11 .

REl (j j an (

In any event, for each%choice of functions

,t

determine% a homoand'heace

, say) of dimension ai , rom_the .scale
,

' ", We emphasize the fac

'abtolue pioperty.ok G

derivation of G . In Other

secondary quantity,:adnot b

in theestablishment of scienti

.linambiguous conventions regarding

'it is possible to refer to the "dme

the-(we mean the dimensions of

rules 5 and cp, .

tha

jolt

in

nexus function

he scale G .

nsionalitt of G is not an

ends on the rule 8 and ' ( used'ih the .4

determined by the

.It is, important

ds,-the'dImensionality'is.

h- secondary scale alone.

c system's of measurement,

he rules 6 and .:13, .

',When the primary scales
.:,

regard a secondary ',quantity
as being specified by it secondary scale

TG say) , and by the multihomogeneouS function.
1, : Tf Fi -4,,G .on the

/
,c4,#esian roalIgt !uLF ., ',71ausame!,Ahall Sometimes refer to ansecondary.,

,54,Pe...-4
einantiiPja ,I. y.H ' t, ,

\

i,10,44,,,,.00(c; gUdenotep4d se4 of i.milar fUnCtiOns actually obtained
4

Fi

to adopt clear and

When this is -done

ions of & with the understanding

w' h re4ect to specific
F., , and fixed

are fixed, it is sometimes convenient to

I

from'the definition of a secondary quantity (i.e., Go ,is the range of I)
,

then We can'diatinguish Several
pOssibilities:

4' 't

;S

4t1 4 04



(i) G is a complete ratio scale. (This implies not all = 0 .)

(ii) G
0

is an incomplete ratio scale. (That is, g e G
0

'implies'y

that kg E G 9-for every k E /it , but g is notonto R4- .

0

,
'2 4his*implies-not all. -a 0 .) _ ' ),' , .- ,-4.-t

-; i '
=

7 o

(iii) Each g E G
0

is the same function. (This 'implies that each
. . . .

a = 0 . Such a secondary q4antliy. is often called dimension-
s -

.

less.)
z

'

r
r,

. .

.

Ng have already seen numerous examples of (Si), in the genesisof "derived"' ./

scales for area and volume. An example of (ii) occurred when we were con-

sidering the " measurement" of simple angles by.ving the arc length of a fixed`

circle: Idesaw an example of (iii) in our treatment of radian measure.' Case

(ii)' with each function a constant function,
\.

;
i connected tritp the question

or "dimensional constants". From our int O view a dimensional cons
'

tant
.

4, is best treated as the sipplestj7possible kind of secondap quantity: one '

whose associated functions form a ratio scale in whio .1.7feinctiop has a

constant vatue (i.e.; all domain elementp ,are.equiyaleni, so' that, in effect, . '

4
o . t

there is only on equivalence'claSs, b0 say).. Such a dimensional constant .

V
.

'is 4Ohlly specified.ly giving its Value g(b
0

) for a particular' choice of
- \

1k

ftnctions(f.),andits
'<Jr i

i i
dimensiona.in-eachF:Notallaare Q.,

. i

zero;,and the Value for any other choicg of functions (Uc.f.) say) is easily

..

1 1
.

.

calculated as 11 *1 g(b0) . If the set of secondary functions (Go)" con-
,

tains only-a single constant function we might 'regard this dimensionless,
el,

secondary quantity..(or its unique value) as an absolute constant. .From. this .

point of vie an absolute constant-might be regarded es a dimensional constants

with dimension zero in each primary quanti,ty (E.g., the.well -known secondary
t

_

quantity: "length of-circitmference divided by length of diameter", whose
(

- domain is the set of all circles
i

and whose single constant value.is
1

the v,

number it .)
'

t:,
i

-

.
' '( ' '( .

In particular coniex
.

(such As in mechanic) a, system of measurement
,

,., consist4s o* a,oic6 particular set of functions, one from each of theCh- of 1
.

primarwAcales involved (e.g., foot-pound-second (FPS); or centimeter-gram-

second fCGS)) together with a coplete desCription of, each of they secondary

scales involved, as the scale d rom a..,part4-ttAlda ilantity.
! ...-..... :,

-4Thus for each secondary scalp in he,system we have a spectfic multiliomogeneous

function fromtha cartesian.product of the.Ti'iMar sCaleS to qe secondary
,

7: 7.

scale, and acorresporiding;homogeneaus fUnctiOn.'fidm'etith pritary:tCale to .

4 a 5.

Pi;



A
r;

W.
. '

e

each secondary scale. The selectiOn,of a particular function in eac priMary
___,

scale determime61e. particular secondary function ii ikch secondary s

Sometimes e...system of measurement is regarded as being merely the resulting ,.

' --seilkf primary and secondary functions (or some simiIar'set in which 4e
.

,.

pecondary functionsare seleaadap.some:particular constant multiple of the'
4,

t
'natural" selettions) but, bye itself, this is not enough if we are interested - 0

. , .
in dimensional'questions: a homogeneous functions (from each primary sca]re ,

to each secondary scale) which are determined by the, definitions of the
, .- . .

., seconkry quantities, are not determined by their vdlues on only one element.
. -

Of the primary scale. If, in addition to specifying a particular function ,fa'
. .*

from each,secondary scalp, we specify the dimension of each secondary quantity ,ty
e --4..

,in each primary quantity, then the homogeneous scale functions are fully 4:
,..

.

determined, and we may regard this situation as giving an adequate descriptioA

of th? associated "system of measurement".
-

trample. 'As a simple example,involving a dimensional constant, .1t us considr

the classical experilent of Galileo, in which he determined the "law" for

galling bodies. As a result'of the measurelpent of the distance fallen (from
. .

rest) and the elapsed time"of free fall, Galileo discovered that the number

which°measUred" distance fallen appeared to be proportional to the s pare

of the, number Which "measlir" 'The elapst time. If B is the set, of

"experiments", thed we can assoc each experiment `b , a pair of

ti

elements al , a2 , in the domainS--Ai-', of the length sicale,and the

time- interval Scale respectively. Galileo disoovered.that, for every experi-

ment b' (with different objects drOpped, but with they same functions fl f2

measuring length and time-intervals) the function g: B Vlined by

fi(l)
g(b) - ----thad the same value, c , say. 1

(f2 (a2))
-.

'unction (1. 1 (fi,f2).--*g -,Atind let G = (I-(fi jf2))

sociated

S.

Without carryingtout 'any more experiments, we can use theaSsumptions

that length measurement and time-interval measurement functions, form ratio
1

scales, and we see that if F
1

, F 'are the ratio scales for tenth and
- r

time interval measurement, and if .fl = k1f1 e Fi = 1s2f2 e F2 , then
-

f(a ) ic...f (a) -

,1 1 . I a_ 2Eft ft)(b) = gl(b) ze 2 2.-1 / 2
- kik2 c for b c B B.

if(a )1 k2(f2(a))
2 2

4

403400,



1

I

o

Thus each g function is a constant function on the domain of experiments B , '

but the constant depends on the choices of f
1

f
2

. The set G of' all

such functions, g , is a ratio scale, and we say that the corresponding

secondary quantity is a dimensional constant, with dimension 1 ins length and
4)

c' tedbf 6.natgolutel* * constant,

put varies.with the choice of fl and f2 it is only constant in ,a particu-

lar system of measurement.

The dimensional constant of this simple example is, of course, directly

related to the so-called "acceleration due to gravity", and the set of

functions G is, i!h,a sense, a ratio scale forlthe measurement of this

acceleration at a particular,place. Moreoyer the whole of our discussion

involves a number of oversimplifications, whit can be taken care of in a

more relined approach to this simple situation. In such an approach the

pmain of G has to be reinterpreted and extended;, and the functions on the

extended domain are no longer constant functions, but.they still make up a-

ratio,Scale. -

You might have been concerned that the. domain of , in the above
P

example, was rather vaguely .suggested to be a`/set of experiments". 'If we

wished to be more Trecise, we could have taken the corresponding set of

pairs (al , a2) (a distance 'and a time-interval) as the domain. This
.

subset, of, Al X ,A2 is a function; (or, if you. prefer, the subset determines

a function: this depends on 'which definition of function we are using).

The relationship of
i
a
1

and a
2

is a 1-1.correspondence, hence the set
,

ofpairs' (a2,.a1) is also a function. Thus we might think of the domain

, of G as the \functional, relationship between distance fallen and elapsed

time, a,fUnctional relationship which exists'independently of any,question

of measurement. -If f
1

e F
1

f2. F 2 , then the)set of ordered pairs

((f
2
(a

2
,) f

1 1
(al)) is also a f inunction, whose domain and range are cbritaed. !

- in R
4

. This function, which depends on f
1

and f
2 ',

' pAn'be expressed

.

by <he "fornbla" s,= ct
2

wherewhere s = fl(al) isIthe 'number which,"measures"' ;

thewslistance fallen from rest in the time interval ,a2 /{whose measure under

. f2 is t =f2(a2)) And' c depends on fi and .f2 . (If you are familiar
. r

with calculus. method's in,mechanics, yoU will knOw that the measure ofthe

. acceleration (in p
iipropridte ,units") is the second derivative of 8 with

c,

respect to 'it', and is therefore 2c .)

.

. d 0 ri
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Dimensional Constants and Homogeneous Functions on RatiO - Scales. In the

previous section we mentioned that a dimensional constant .may be associated

with a.homogenequs function (with dimension / 1) from a ratio scale to itself.

We can easily tie this in with the above example, s.s gollows: Lee Y be any.
r *

homogeneous function of degree 1 from F1 to F2 (e.g., define Y ("foot") =

"second; and.extend in the °fay possible way so as to give Y. dimension I ).

Then the experiment of Galileo may be considered as defining another homo- -

geneous function from F. to F
2

,as follows: If f
1

s-F
1 /

let
1

-y' : fl -;f2 , where f2 e, F2 is the _unique function in F2 such that for'

(a1, a2) e 13, = [f2(a2)12 . The result of Galileo's experikent

shows that y', does not depend on the particular element (al, a2) E.B ,

which we use in its definition. Moreover, for each sich pair of functions

(f1.; f2 = y'(f1)) the Corresponding value of the diimensional constant is 1 .

If (a1
,

a2 ) 6B, and f1 , 1'2 are the functionsrwhich have e
1 /

a2 . as
.

units, then- f2 = yq.f ) ; that is y' corresponds to the unit mapping

, for those functions which have units within the 4omainpf

expefiment, That this unit mapping is homogeneous }s Of course, part of

(alileots discovery. It is easily verified t4at- y' is 'a homogeneous

' function of degree
2

from F
1

to so the composite function Y
-1

is a homogenemis function from F2 ,to F
2

,"wi:th..degree 1, and s-1 r=

1isa homogeneous function from F
1,

to F
1 2

, with,degree .

With this example in mind, we can now take another look at the relation-
,

AhiP of length and area for polygonal regions.. Let f be a length fUnction,

let g be the area function whose Unit isAthe square region whose side is
A,

the unit of f. (in the terminology defined in Section 3-5, g = n(f)), and

let be be t.helareafUnction whose unit Is (determined by).the rectanollar_,

region lose sides are congruent to the unit of f ,.and to a fixed segment

a , respectively. It is easy to prove (in -pt context of the area theory

developed in Chapter 3) that for every polygonal region. b

g(b5kT. cgcr(b)

.
...:

..where c = f(01) . That is, c . only on f

t

. 'We can put this in the -4

, , \
.4. ,'fork Of, a dimensional constant by defining (f), : B -411+' by

[ (f) (b) - gg(b) t(a)

Asa cf , .

.'"
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For eat choice of. f , the corresponding function §.(4 is constant
function on the set B of polygonal regions, and the resultiffg dimensional
constant has dimension 1 in length:.

The example of Section 3-7, concerning the measurement of volumes by
fluid displacement in a fixed cylinder, can be.similarly regarded. In this
case the relevant dimentional constant has dimension 2 in'length, It deter-
mines a ratio scale whose constant values are, in effect, the-areas of the
constant cross - section under the relevant area functions.

A ' 1

There are many facets' to the simple quest'ion,of dimensional 'constants,
, -

and they May appear in different, ways, in whet is essentially the same context.
, .e

For example, ihenever we have a fixed set of primary scales, a dimensional
constant (11 and another secondary quantity" , we can
derive a third secondarybquantity whose dimensions are the respective sums
of those of_ H. and G , andwhose domaincorresponds naturally to that o.

.G . More specifically, let i=1, ,2, ..., n,- let (Fi) be the fixed primary
.sca.l.eS, let § : Tr.Fi =9 H. have dimensions i .in Fi , and let ' '. ' '

ns
, o

. ,o
. '10&.P : T1 F.. --> G he.A cl,imenson, a* -in F... Let 13 'be the domain pf G ;

,

3.
(.. i

....e.. .
and let a foe an element in the.domain of the diMetsioal constant. ('As

4 the furictions in H are constant functions, all domain elements are
equivalent.) ' The.ptoduct RIX G of the scales H and G hasdomain

- elements (a b) and there is a naturar 1-1 dorrespondencie ((CI b.)<-3-->b)

,of the domains of H X,G and G . Moreover we pad combine the functions
and §1 tooh?* a function §" : Fi -)11 X G , defined by

4ft
11 ; IT fi -4 p.(q (7 fi )1 X ( 01 l(TT fi)1.) whose dimension in Fi is

ai + a! (1=1, 2, ...., n) . That: is',, (H X G , to") is a seconda quantity
whose ratio .scale istivirtually the same as that of G , (because, the domains .

. ---- 1,--,,correspond ,,1-1, and ..§.(TT-f-)- 4.a-constant for each Chtaide of (f D' butI i- .whose dimensions are quite different. You can easilj apply this to our over-
II

s element jost

worked area example, wHere is the length scale domain [a) whose
in

-. , .a, 4. , 4
g le for segments, G ist is the segment a , F' is the lengthl

r Os 1. , .
the area. scale for polygonal regiOns; I : f -) (a) for every, ....f F ,
and 1 is the homogeneous function T1 a :-F .-)G (of dimension 1) which,

`fis det relined by a as in SectiOn 3-5. If §" is combined`with theIv
homogeneous function (of dimension 1) induced by the natural do3na.in corres-

. pondenc& ( a , b)F-->b , we obtain thel homogeneous function 1 .: F .-) G ,.
of dimension 2, by which the 147V,th and area scales ,are conventionally

..rfe.: , .
.; related.

',409

1



Products df Secondary Quantities. The process used in the above example
T 4for deriving-a third secondary quantity 1H X G ,'q? "; as the product of the

secondary uantities H and G can be appliedtwhether or not H IS a

dimensional constant,nt,but, of course, in the general case the domain of.

(H X G $") does not heeve such a simple relationship to'the domain of G .

We shall not go into this in detail. .The important property from a dimensional*,-,-
'

point of view is that for each i , the dimension pf (H X G 9") F '

i

.tbs the sumof the corresponding dimensions of (H ) and (G

Formulas. The word "formula" is used in so many ways in mathematics and

science'that there is no point in trying to give a general defiriition of the

word. What we are interested in hefe, a.,A)e forL1
4

which are statements

abdut numbers (generally positive real numbers) some or all of which are the 7

values of measurg functions.' (We include, natu ally ,the numbers obtained

from empirical measurements fn.this dscription. ) Moredrer we are not

generally interested'in isolated statements (e.g., "Hints- height inches

is 73"; or "the length of this boat in inches is 4.37 time its weightsin
4

potrunds".'',04.r concern is rath ith statements which themselves have a ,-

"domain of validity" (which, in most caSes,,is indicated an accompanying

verbal deoription) which -co ains more than an,isolated eleMentts.

Let us considef in'detail th and, ell-known.formula for the area,

-"of a triangle. en this is expressed as-

"A= 311)h:, where A denotes the

artits base' and height."

A ,7

area of a t'rfangle, and b 4

. -

Sometimes this is amplifiedrby such phrases as: "the.formula for

of any triangle is - - -";. and when .the length and. area are

measured in corresponding units "; but it is rare to find specified all of the

conditions under which the formula holds. Provided that all of these condi-

tions are clearly understood, there is no harm in taking,such notational.

shortcuts, but it might be worthwhile to look at this formula in detail, t

set just what it involves. , .
I.

. ).

',' 'N
/-

'First' of all, we might ask: vhelA is'iueh a formula from a mat
, - tical

..,

point of .liew? Clearly, at the sim e't level, it is a symbolic tatement,
',:: . .-

about numbers, a ccompanied,,by a rel statement which gives a source of

the numbers: 'the numbers a the values of cert* measure flanctions.' 1Which

measure functions? One s an area function, and one is a length function,
.._:

°'

. 3 1:
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4 I "0

4



1

and these are related in-a'spetifip way. tsit a statement about one measure.
-' function and 9ne area function? No; anf length function May be.usedrbut

then the.area-function Must be suitably related to the length'fUnction; in

fact this elationship involves the particular "standard" homogeneous fano%
tfon 11 of dimension 2'''frOm the length scale (for segments, say) to the area

sc'aleqfor polygonal regions, say), which we defiled 'in Chapter 3. (That is,

,maps a given length Puhdtion onto that area function whose unit is.the

square region whose sides are congruent to the unit of the given length

function.)' What are thedollain elements whose values under a chosen length,

function'and the related area function are the rummers in the formula? The

domain elehent for the area function is any 'triangular region; and the domafn

elements for the length function are any side of the triangle as "babe'', and

the-Corresponding "altitude". (We use "altitude" here to denote the relevant

segment, and not its measure under a particular length function; bath uses

are of course wellestabliahed.),

We could collect all of the above answers together, to give a complete

statement of the result which is conveyediy the common formula A =
1

but we shallnot_bother to do this. Instead, we suggest another line of

thoughtr if trie formula is to be valid for the whole domain ofs.11 triangular

regions and related pairs of segments, using any pairs of related length and

area fUnctions, is it riot possible to express the'sade result as a relation

between functions? The answer' is, of course, "yes", but the formula does not

express such a relationship as it stands.

In order to give the corresponding functional relationship we introduce

some additional terminology, Lct. B be the set of all triangular. regions)
', and A the Set of a4.1 segments, (We are going to drop the suggestive form

"A =
2

bh" of the formula, in favor of "y = xix2" :so we won't need the

letter 4,6X to denote a number any mOre.) Let b be a function from B to
o

A X A Which associates with each b e B an ordered pair (al ,,,a2) con-

sisting of4any side a e A , and the corresponding altitude 8.2.e A . Let
-L

n be (as above) the standard homogeneous funVon of dimension 2 from the

set F of all length functions for A to the set G of all area functions

fo B . Let f g P, let i(f) = g e , and let f(al) = xl ploof(a2) = x2 ,

g(b) = y . Then, in this terminology, the usual formula which relates the

area of a triangle with the lengths of its base and altitude, is

1
xix2

4-08
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That-is, ±f. 8(b) . (al, a2) ,

1
.f0.

/
1) f(a2 . It follows ghat (with the notation Of th'e4pre '. ,sectiOn

. .

,
,

.
ratio'

.
. -- ,,Y; . . t * , ';'-.-.for f4nctions in a product of ratiscales) " r

it.

then, for

for every f e F .
A

I

The domain of the function which appears on each side of this equa,
);-.

i sl4the set of all triangular regions. This functional relationship, w h

the essential Content of the so-called area- formula for a triangle, ce.:11,d1r-_,

pictured in the commutative diagram
.'".. .

B 11( f)

A x A
f x:f

R
+

+ +
R x R

. ,of 4'1

i

J

4 The validity of the formula, in functional forM:clis equivalent to a st ement

that this diagramis commutative. This relationship is equivalent to

n(f
2

*
Wf X f)) = 2 s A(f)

where 6 is the "diagonal" homogeneous function r u(f X f) . This

relationship holds for every f in the length scale F , and hence it can be

reduced to

n s*E .

In ocher words, the well known simple area ",formula" for a triangular region

is equivalent to the statement that the homogeneous'fOnstions
fl and

.

1 4
"" 5 6, , from the length stale to the area Scale for triangular regions, are

just the same function. This can, be pictured in the following commutative

diagram, in which all of the functions show n are homogeneous function5 on

the indicated ratio scales, with dimensions at showir.

'e-

" . I
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11(2)

,

G

1
Z(2) , 2

6*(1)

II

F X F

fibe fact that r has dimension 2 was'shownin Chapter 3; and the dimension-
.

ality of the diagonal function and of the function .5 (and hence of

1 * * ,

5 `,which differs from 5 by a "constant" homogeneous function of

dimension 1) was thoroughly discussed in the last section. We check easily

that the dimensions- satisfy the necessary conditiOn for commutativity:
.1namelyi that dim, .1 = (dim 2;)(dimt2- 5

*
))

This ",checking of dimensions" of formulas is a useful device, provided
a

that it.is clearly understood what the formula means. This includes an

`-undeistanding.of"the implicit, as well as the explicit, gtatements which

accompany...the formula. If we revert -Co the numerical form of the formula,

Y 2 'cix2

. it is often. stated that "y has dimension'2 in length, xl x2 each have
1dimension 1 in length,
2

and is dimensionless, hence the equatiowatisfies

the necessary condition that the sum of the dimensions on each side'is the

same". From our point of view this sort of thing must be consider* merely

as an abbreviation of something like'What we have spelled out -above in con-

siderable detail, at least up to the point where we had T(f) =

each side of this equation, considered as R. function Of f , has dimension 2

in f ,

The detail which we have gone through above in order to exhibit this

particular area formula as `equivalent to a commutativity statement concerning

homogeneous functions on ratio scales, will, not always be :*ssible or desirable.
.

Moreover as

' necessary if

if we look a

which these

the related

remember is

indicated earlier in this section, this amount of detail is not

we are merely concerned with the checking of dimensions. For

t the statement 1
y = , we, can consider directy the way in

'numbers change alen_a diff-erent length fUriction 'ft = ki and

area function l(ft) =kl(f) , are used. (This relationship,

aot'iust an absolute 1.:ct: it is a consequence of the definition

4."
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of the homogeneous funqio i ,and was proved in Chapter 3; and the fact

that we are using 11 to elate F and G'.is one of the assumptions under

.which the formula is valid.) With these related changes in f and 11(f),

and with the same do inelements b , a2) , we get l(f1)(b) =

k
2

l(f)(b) = k
2
y f

. 1
fl, o.lh ft(a2)

1
(kf)(a.1), -0d)(a2) = k2 1 x x'

N

. .

/ .Thus the functions. represented by each side of the,equation (namely,Af

and iAkf X OS)" eal-1 have dimension 2 in f . Thus this necessary conditdon
1 ,

2
. .for.the validity op he formula, is satisfied.

A,final comm .on this simple example: What is the status of this

"formula" anyway? In otfrtreatment, it is quite definitely atheprem,

(proved in Chapte 3) whtch really contains two parts: orie which relates

certain length and area functions; and another which asserts that, -the product

f(a
1
) f(a

2
) is the .atle, no matter which side of b is taken as a

1-4 ,
1

ementary work the fOrmula y,= x x is often taken as the defitition.
2 1 2

f the area function 11(f) for.triangular regions, and this definition is

motivated binformai arguments concerning congruence and additivity (which-

actually come quite close to our formal definition Of an area function) with

the question of invariance, with respect to Choice of base, quietly igngred.

In scientific work the formula is sometimes taken as having empirical juStifi-

caion; but this presupposes an independent method of measuring area. The

invariance of the products f(a f(a2)1, for different choicesof base and
-10

corresponding,altitude, could certainly b..e- tested empirically, as it is,a
4

simple (and not completely obvious) statement about certain length measurements'

on trianiles. There would seem to be advantages in having students do this
so* .

empirical checking at the time that the area of a triangle is first dis1ussed,

as this reedit is usually given. long before there is any poisibility ofZro- _

viding a forthal'invariance proof.

Dimensional Methods. Dimengional considerati5Cria (pS in the above example

are frequently used far checking the possible validity of fOrdulas whose terms

represent numbers deriyed from measurement, where the relevant measure func-
,

tions belong to ratio.sscales. Typically, such a formulkisasserted td be
,k.,x

- \
.

valid over a specified domain or domains, and -for any choices of measure
.

functions from the different ratio scales involved, provided that the secondary k
r ,

scales involved are derived from secondary.quaniities, andlthereforehav'e:a
,_:.-

specific dimenSionalrelationship to each primary luantity. A measure function
i .

may be selected arbitrarily from each primary scale, but the secondary measure

0
) )

411±y)
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functions used must then be those which are determined by the definitions of

the secondary quantities. Each such_secondary quantity has a definite dimen-

sion,In each,primary quantity. For a formula to,be valid under such conditions,

it follows that, Cori".eSPonding:to the primary quantity F. , a scale change -

(within the scale) from a function f to the function f! = k.1 f.
1

, will
1

, --- ,._ a. a!
multiply

i

1and k , where

_ a.1 and a
i

are the respective dimensions of the two sides of the formulae

inF..It follows that a. and' a! Must be equal, if the formula 15 to
71 , 1

, 1- ---, - ,
be valid under the conditipns specified. Dimensional agreement'of the two

,

sides of such a formula' is, of course, -67-necessary, bit not a sufficient
, .....,-

condition for the correctness of the formul4,__(In'the,example above concerning
... 7 . .

the triangle area formula, the.Alimension.of the right hand side of the equa-

tion
"1,1 -

tion in "length" was hot dependent on the factor -f rg.-EY-other constant :

would have left the dimensionality unchanged, but the formula,would then have

been incorrect,) '

As a further simple example of aformula whose,"dimensionalitg" we can

check, we give a formula (which used'to be a well-known theorem of elementary
I:

trigonometry) relating the area of a triangle and the lengths of its side

Let f5 be a triangular region, ',with sides al a2 a3 . Let f be

a length function, and 11(f) the "naturally related area function. Let

f(al) = xil f(a2) = x. -f(a
3 3
} ana let n(f)(b) = y . Let

s = (x1 + ,x2 + x3) (that is, s is half of the perimeter, as measured by

f) . Then the numberss
/

x
1
, x, x3 ,y, are related by the following

formula (which is proved-in many,trigbnometry books): ,

y = [s(s - xl)(s - x2)( - x3)]1/2

7,

It is a relatively simple matter to put each stile' of this equation in .a foim

where it represents a "derived" fluntion (derived from a ./ength function f)

on the domain of all triangular regions, and to verify directly'that the right

hand side has the same dimension in f (namely,.2Y as the left hand side,

11(f) . Thus the necessary dimensional condition is satisfied.

This example is, of course:krather trivial, but the method is not, In

the physical sciences such simple dimensional tests prolkde a useful chgck on

41* the possible validity df formulas.
r



Deriving Formulas From Dimens onal Considerations. As we have, seen zpove,

dimensional considerations can sometimes be used to test the validity of a

formula which relates numbers obtained as the result of specific, and inter-

related, measurement operations: the dimensional argument cannot show that .

.
the formula is correct, but it might show that it is incorrect. Another use

of dimensional arguments is in the derivation of fOrmulas. Again, such a

derivation cannot nerallY be complete, but sometimes dimensional arguments! .,can be used to giv some limitatiOn on the possible form of a relationship
1 . .

between "measurements", a relationship which is, in fact, usually one between

certain "primary" and "derived" measure functions; (i.e., between hOmogeneoys
I

functions on ratio scales). Virtually a 1 of the significaht'examples of this
1

method''(which isusually known ae."dimens anal analysis" or the "method of

similitude") belong to science and enginee ihg, and any useful discustion of

them requires a knowledgeof these, areas f r beyond anything that we have pre-,.

supposed for this book. In spite Of thi Zirdtation,.we can give you some

idea of what dimensional analysis is'abo t, and we can ppint out some of the

difficulties by means of a very siMpil 4Xample.

\ , .
, Roughly speaking; in the study ',of a,particular physical sit tion, or

phenomenon, dimensional analysis concerns the derivation of po le relation-!
\

'Ships between c ertain "variables", representing numbers obtained as a result

of the measurement of"the quantities involved intthe phenomenon. The measure
N Y

scales. Sofunctions involved all 'belong to ratio scal Some are regarded as "primer?,
.and some as "secondaryh. These terms Have no'absolute significance, but are '

.
...,

regarded as being.fixed for the particular phenomenon under Vonsideration. ..

__
.111`Moreoyera of the "secondary" measures, are regarded as having.specific - -- ,..

relationshiks to the "primary" measures involved, so that, in particular, each

"secondary measure" has a quite definite dimension in-each-"priMary" measure.

The type of relationship sought is one which holds for all instances of the
\ , , ..

phenomenon (i.e., over a certain nontrivial domain), and which takes the,same
).

form if a different set of "primary" measure\functions are used, along with the, --,

cOrresponding usecondary"-mespure functions. :Thus the relation sought is,..in

effect, a relationship petween functions, anenot just one between numbers;

andLthe requirement that itaform should be invariant under "change of units",

implies that (assuming that the'desired relationship is expresseh1/4as the

eauftlitY of two dimensionally homogeneous functiOns of the primary quantities

involved) each side of the ,equation must have the,same dimension in each,of,
ed

the "primar y" quantities.' )

loT3
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Why we should be-interested-in physical relationships which-have this

particular type-of.invariance.is, of course, not a question that can be

answered mathematically. Appeal is frequently made,to sOme sort of physical
.

",principle ", which yOu will find expressed in'some scientific texts by such

statements as -.

"If an observable is to have qualitative usefulness it must have a

significance which is independent of the choice of measurement units."

Mr 1

"The laws of physics do not%depend on the chosen system of units."

"very legitimate phyiical equation must

dimensiona'l homogeneity."

satisfy the principle of

-

The Status of these statements need not concern us here. As far as the
s.

mathematical side of dimensional analysis is concerned, certain assumptions

have to be made. These include: 4.1

(1),, The phenomenon under consideration is one to which tfis,

methods of dimensionalansaysis,are applicable.

All of the relevant "quantitiesw(e.g., length, mass, *MOY

etc.,' including any relevant dimeniional constants) are known. .

Some of these are distinguished as *primary" and the remainder
/

aref"isecondary": The "primary" scales are ratio scales and all

of the other:"quantities" transform homogeneously with respect

td change of uniis,in the "primary" scales. Thus specific

'7
/.1

'7,

dimenSional relationships (in terms of the "Primary"

quantities) are assumed for all of the "secondar..y" qUantities

andtall of the' dimensional constants involved.

At-this point a mathematical discussion is possible. If the desired.

relatiOhOlp is to be expressed as an equation, then each side of the equation

will represent a function of the various measure functions and dimensional

constants involVed, and each side must have the same dimension (separately

for each of Ahe " primaxy" quantities) if the equation is to remain valid when

arbitrary changes of function are made for the "primary" scales' with con-

sequential changes in the "secondary" scales Ind dimensional constants. The

mathematical anslysid of this situation sets definite limits to the kind of

relationships which can occur. In many cases, each aide of the equation will

self re4esent a function which belongs to.a ratio saale, and the earlier
1

Icussionof the possible, form of such a secondary scalewill.apply. (In
4
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effect, itrmust be, simply related to a product of powers of the scales

(primary and secondary) which are involved.) The dimensions of each side of

the equation must be the same in each primary quantity. These powers are

then equated, separately for each primary quantity, and elementary linear

algebra can be used to obtain the possible "forms"'of the equation sought.

You will find examples of this procedure in [17]. At best the relationship

may be determined up to an unknown (absolute) codttant (which may usually be

determined from other information) but, more generally, the "dimensional

analysis" will only determine the relationship to within;one or more arbitrary

functions of certain zero dimensional (or dimensionless) products of the

quantities involved. The general solution is known as the TT-Theorem.

Proofs of this theorem can be found in most books devoted to dimensional

analysis, including [3], [17], and [18]. The mathematics involved is mainly

linear,algebra (specifically, the theory of simultaneouS linear equations),

- and is not particularly difficult. But no amount of valid mathematical argu-

ment can give a result which is physically significant, unless the proper

physical assumptions are made before the mathematical argument begins. And,

in general, the decision as to what are the proper assumptions to make in any

particular physical situation demands a,considerable amount of genuineex -

perience.
.

The 'book referred to above contain many examples of the use'of 1.
R .

dimensional analysis, an some discussion of'the sort of difficulties which
. .

even an,experienced s entist can encounter. The following example illustrates

a few of these , difficulties in a particularly simple form.

Exam . A stude of science, who had just learned some of the elementary
k

facts about me ement and aiMen4ons, is engaged in painting his home. He

commences paiii_ing with_a_can of_paint_containipEl -6,rubic feet of paint.

(We us, e the "cubic fooe'volume function to avoid unnecessary and irrelevant

4 compl4ations.) When he alas used up the can of paint he finds (by measure'

merit and caLculation) that he has covered 500 squarefeet,'and that he has

300 square feet still to paint.' He wishes to know how much paint to buY in

rder to complete the job. From his knowledge of dimensional method, he

easons'as f llows:

/
.

,

depends
"i

/

The' a ea covered depends on,the volume of paint Used. Hence, if the

area covered by, volume y cubic feet .s x square feet, then,:,
,

X =,' TO . The relationship of' x and ylkill'have the form
. r

x = ,, for some real numbers c >0 , and a . From dimensional
..,

11.15 41 8
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_ . ; '
considerations, if the length function (feet) is changed'by a factor

2
of k , the area functiodchanges by a factor of 4 and the volume- *r,:;,,;

:

.,, t.,. .

function by a factor of k3 f. Hence ,

'

7-..
, :-.0 ,,,,,,-

k
2x

y. )
3
y
Act

from which k
2

= kit
3N
j
a

, so that a = 3 . Theveonstant c is hOW.:°'

11\ cdetermined from the 2/ 3
relation 500 c vs) , whence c M 200O,T.7

Hence the remaining 300 square feet can be painted with y cubig.

feet5.irhere 300, = 2000'"y2/31 Sothat y = (-235)A.-;'

Of course this is complete nonsense. "Obi'dously" the solution palls for
t

a simple proportionality: If y cubic feet is required, then

so that y = 4o

(3, : = 300 :500

-

Hon *lould we "exblan" the mistake whial Our student has made? We

°might say that, by experience (or even "common sense") this type of problev,m-

is always solved by a simple proportionality, and we, might even back:144W

by pointing out that the method Used by our student

that, in order to cover twice the area covered by a

would require a volume 2
2/3

v , whereas,"clearly"

would lead us to co/%1114

volume v. of, paint, we

twice as much paint Li -

.
' required to cover twice the area. Our student is likelyto agree with thlp

but still feel Unhapppeconcerning the reasons for the failure of his metho
I, -A sophisticated answer would be to point out that the conit4t. c in his

"formula" x = cya is a diMensional constant, related to an assumed conarintt.4710

thickness of the paint film; and that this dimensional constant is"cledily"

of dimensional in length. If our student now reworks theproblemrwiththis2_

assumption, theitiNa will,be 1, and kris answer will be "Correct".

There are two worthwhile comments which can be made concerning this

1 simple example:

(i) Although we would not normally think of using dimensional,
. .

analysis'on such a problem, this should not prgvent us. from
%1 I

getting a correct answer by the use of dimensional methods.
1 .,

.
.,4...

t
..The knowledge, or intuition, that enables a.sscientist to see

I

at once that a dimensional constant is involved, can only be
...444.

gained from experience, or'b' writing down carefully all of,/

the assumptions of the problem.



s(ii) 4"kom a bathematical point o' vie k, tliolIe is an incompleteness ,

- ,

about the *ale approach tethe probl:em, whether uding'dimen-
t

sional me#hod's or using the method of propoxtion. This in-

completeness results from the use of metflods Which depend on

certain assumptions, without making these assumptioris expkicit.

If our student asks us why the method of Proportion tNorks" t

we should be able to analyze the problem to discover the

relevant imp1icit assumptions. Ih this particular eXaMple

these are 4 r

s(a). that the paint is applied in a film of'uniform thicknes

(b) that the shape offthe surface is irrelevant, so that we

can assume that the volume of-the paint after application

can IT calculated (as area of base X height) as if it were

a rectangular prism of very small height;

,(c)_ that the volume of paint inth can is the same as the

volume Of.painton the surface after .4Taication.,

(Actually it is sufficient to assume that the two voluMes

are proportional, with a constant (not dimensional!)

factor of proportionality; e.g., a "shrinkage" factor.)

0
From these assumptions we may solve the p lem directly, by first

calculating the assumed constant thickness from fact that theyOlnme of
1paint on 500 square feet ofsuXface 73' cubic foot.. If we "set ii ", with7,

out actually completing, thik calo_ulation, we will see ,the ,justification for

the use of proportionality methods.

There is an almost endless list of simple,proportionality'problems which

are related tosquestiOns of measurement. The mathematics of these problems

is usually completely trivial, and the fact that so many studehts haVe trouble

with them it) possibly due tollhe fact that their intuitive grasp of ihe

consequences of the implicit_assumptions is not satisfactory. It is not always-

possible to improve this intuition by actual physical experience (in fact many

proportionality problems are only nominally "real" in the'senste that the

language suggests a "real" situation) so it might be worthwhile occasionally to

examine such a problem critically, and extract the underlying assumptions, to

tie joint where a complete_mathematical treatment is possible. Such a treat-

-went-went will usually disclose Why a proPOrtiOnality argument irvaiid. a
e

-aifkerence in approach of the4twO methods is roughly thp same as that between

the,solutiOn (or partial solution) of a problem (in mechanics, say) by the use

417 :42
O
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.. . ...

of dimensional methods, and the solution from the differential "equations of
, . ...

melon". Most mathematicians seem to prefer the latter approach, but the

. former q yield useful 121formation in situations which are too coMPlelNo
. .

permit a complete mathematical formulation or solution. This is particularly

true of many engineering applications, in which valuable inTormAtiop is

ob 4through the use of"scalemiodels" procedure which invo1res the.
%

u(t.a..Tne of dimensional methods. Examples of this are discussed in the books._

given earlier.as refeqences. In addition,. 'Some very simple ideas about such

"scaling" are contained in [20] and [21]. The latter book, whi& was first

. published in 1638,,has`very great historical interestioin spite Of.its many
O' es - 4°'

-1,'

deficiencies. .%

ai
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abelian group, 32
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affiye group, 37
angle,

definition of, 210, .

generalized, 236
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an 1$r measure

in mathematics, 208
of h 1-otation. 239 ,

angular measurement
in synthetic geometry ;' 208

arigurarity, 196 .

archimeclean postulate; 132'
archIthedean-property, 215
arc length, 219

as angle measure, 228
'area, 243
area,from an empirical standpoint;
area: function, 250, 322

',tor polygonal regions, 268
area functions,

. for developable surfaces, 3
existence, of, 261 ,

extension of domain, '95

monotonicity, 283
naming of, 256, 287;
foi. polygonal regions, 267,1282
for polyhedral surfaces, 303
for rectangular regions, 248

area of surfaces, 302
arithmetic progression,'107

, autOmorphism (of groups), 34
adtomorphisms of (R4=,+), 65

0
betweeness nostulates!1446,
betweenness,

for rays, 210
eihomngeneous fungtion, 30

degree of,t 30
bilinear-function;10
binary relation,-I0
Bolyai's Theorem,283
Booles,;allgebray

ttalOsetp, 182

of sets, 182
_LBorql, 297

'

INDEX '

Sorel sets, 190
broken segment, 174-

--brokertsegments, 166
Bridgman, 0.7, 321, 314'

Ctritor-Dedekind postulate, 143, 225,226
_cardinal measure, 83
cartesian plane, 9

I --
cartesian sroduct,
Cavalieriis Principle, 312
.chaiacteristic functi4, 302
- closed interval, 185

closed set in R, 186
co-halfplanar andbq, 214"
'Po-halfplanar rays, 210
commutative diagram, 16
commutative group, 32
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direction on a line, 164
/Th 'distance function, 118
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duality,
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Tr'
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endomorphisms of (R+0,), 67
equivalence classesf-11
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properties of, 356
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simple curve, 173
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space curve, 178
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surd field, 126"
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synthetic geometry,
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